PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal nanoparticles in nanosensors for food quality assurance

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nanocząstki metali w nanosensorach zapewniających jakość żywności
Języki publikacji
EN
Abstrakty
EN
Background: Nanotechnology is applied in the food industry to ensure food safety, and it is used both in the processing of food and detection of contaminants. The assurance of quality and safety of food has become an important issue for authorities and food supply chain actors. In order to protect consumers from contamination, adulteration and spoilage, it is absolutely necessary to conduct analyses of food, as it is exposed to numerous chemical substances, which may be harmful to human beings and the environment. Methods: This work presents an overview of the literature concerning nanosensors with metal nanoparticles, which are used to detect the presence of chemical contaminants, pathogens and toxins, as well as to monitor food quality status. Such solutions will undoubtedly contribute to maintaining the safety and quality of food. Results and conclusion: At present, food supply chains are becoming more complex, environmental constraints are becoming stricter, and consumers are changing the way in which they select and consume food, and all those factors inspire modern societies to be more concerned about the harmful substances that could be present in food products. Application of nanoparticles in the food production industry are farreaching and more research in this space is warranted. As developments in the research and development of nanotechnologies continue, so will the opportunities for the food industry to benefit from nanoscience.
PL
Wstęp: Nanotechnologia jest stosowana w przemyśle spożywczym w celu zapewnienia bezpieczeństwa żywności i jest wykorzystywana zarówno w przetwórstwie żywności, jak i wykrywaniu zanieczyszczeń. Zapewnienie jakości i bezpieczeństwa żywności jest ważną kwestią w łańcuchu dostaw żywności. Aby chronić konsumentów przed skażeniem, zafałszowaniem i psuciem, absolutnie konieczne jest przeprowadzenie oceny jakości żywności, ze względu na narażenie na substancje, które mogą być szkodliwe dla ludzi i środowiska. Metody: W pracy przedstawiono przegląd literatury dotyczącej nanosensorów zawierających nanocząstki metali, które służą do wykrywania obecności zanieczyszczeń chemicznych, patogenów i toksyn, a także do monitorowania stanu jakości żywności. Takie rozwiązania niewątpliwie przyczynią się do utrzymania bezpieczeństwa i jakości żywności. Wyniki i podsumowanie: Obecnie łańcuchy dostaw żywności stają się coraz bardziej złożone, ograniczenia środowiskowe stają się coraz surowsze, a konsumenci zmieniają sposób, w jaki wybierają i spożywają żywność. Wszystkie te czynniki powodują zainteresowanie i coraz większą dbałość o jakość i bezpieczeństwo żywności. Zastosowanie nanocząstek w przemyśle spożywczym daje szerokie perspektywy, w związku z tym uzasadnione są dalsze badania w tym obszarze. Wraz z rozwojem badań i rozwoju nanotechnologii będą również rosnąć możliwości, jakie przemysł spożywczy może czerpać z nanonauki.
Czasopismo
Rocznik
Strony
271--278
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległości 10, 61-875 Poznan, Poland
Bibliografia
  • 1. Abdullah A.H., Adom A.H., Ahmad M.N., Saad M.A., Tan E.S., Fikri N.A., Zakaria A. 2011. Electronic nose system for Ganoderma detection. Sensor Letters, 9[1], 353-358. http://doi.org/10.1166/sl.2011.1479
  • 2. Ai K., Liu Y., Lu L., 2009. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Journal of the American Chemical Society, 131[27], 9496-9497. http://doi.org/10.1021/ja9037017
  • 3. Albelda J.A., Uzunoglu A., Santos G.N.C., Stanciu L.A., 2017. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors and Bioelectronics, 89, 518-524. http://doi.org/10.1016/j.bios.2016.03.041
  • 4. Aung M.M., Chang Y.S., 2014. Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40, 198-207. http://doi.org/10.1016/j.foodcont.2013.11.016
  • 5. Bi J., 2019. Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates. Materials Letters, 236, 398-402. http://doi.org/10.1016/j.matlet.2018.10.138
  • 6. Chassy B., Hlywka J.J., Kleter G.A., Kok E.J., Kuiper H.A., McGloughlin M., 2004. Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: an executive summary. Comprehensive reviews in food science and food safety, 3[2], 38-104.
  • 7. Chen Z., Lin Y., Ma X., Guo L., Qiu B., Chen G., Lin Z., 2017. Multicolor biosensor for fish freshness assessment with the naked eye. Sensors and Actuators B: Chemical, 252, 201-208. http://doi.org/10.1016/j.snb.2017.06.007
  • 8. Chudobova D., Cihalova K., Skalickova S., Zitka J., Rodrigo M.A., Milosavljevic V., Hynek D., Kopel P., Vesely R., Adam V., Kizek R., 2015. Electrophoresis [36], 457-466. http://doi.org/10.1002/elps.201400321
  • 9. Devi R., Yadav S., Pundir C.S., 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 137 [3], 754 -759. http://doi.org/10.1039/C1AN15838D
  • 10. Devi R., Batra B., Lata S., Yadav S., Pundir C. S., 2013. A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48 [2], 242-249. http://doi.org/10.1016/j.procbio.2012.12.009
  • 11. Dridi F., Marrakchi M., Gargouri M., Garcia-Cruz A., Dzyadevych S., Vocanson F., Lagarde F., 2015. Thermolysin entrapped in a gold nanoparticles/polymer composite for direct and sensitive conductometric biosensing of ochratoxin A in olive oil. Sensors and Actuators B: Chemical, 221, 480-490. http://doi.org/10.1016/j.snb.2015.06.120
  • 12. Dwiecki K., Nogala-Kalucka M., Polewski K., 2014. Application of quantum dots for the determination of ingredients and food contaminants. Food Science Technology Quality, 21[3].
  • 13. Dungchai W., Siangproh W., Chaicumpa W., Tongtawe P., Chailapakul O., 2008. Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta, 77[2], 727-732. http://doi.org/10.1016/j.talanta.2008.07.014
  • 14. Galian R.E., de la Guardia M., 2009. The use of quantum dots in organic chemistry. TrAC Trends in Analytical Chemistry, 28[3], 279-291. http://doi.org/10.1016/j.trac.2008.12.001
  • 15. Gao M.X., Liu C.F., Wu Z.L., Zeng Q.L., Yang X.X., Wu W.B., Huang C.Z., 2013. A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties. Chemical Communications, 49[73], 8015-8017. http://doi.org/10.1039/C3CC44624G
  • 16. Ghasemi-Varnamkhasti M., Mohtasebi S.S., Rodriguez-Mendez M.L., Siadat M., Ahmadi H., Razavi S.H., 2011. Electronic and bioelectronic tongues, two promising analytical tools for the quality evaluation of non alcoholic beer. Trends in Food Science & Technology, 22[5], 245-248. http://doi.org/10.1016/j.tifs.2011.01.003
  • 17. Gracias K.S., McKillip J.L., 2004. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian journal of microbiology, 50[11], 883-890. http://doi.org/10.1139/w04-080
  • 18. Joo J., Yim C., Kwon D., Lee J., Shin H.H., Cha H.J., Jeon S., 2012. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst, 137[16], 3609-3612. http://doi.org/10.1039/C2AN35369E
  • 19. Kalele S.A., Kundu A.A., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Kulkarni S.K., 2006. Rapid detection of Escherichia coli by using antibody‐ conjugated silver nanoshells. Small, 2[3], 335-338. http://doi.org/10.1002/smll.200500286
  • 20. Kelsall R.W., Hamley I.W., Geoghegan M., 2009. Nanotechnology. PWN, Warszawa 2009, 5.
  • 21. King T., Osmond-McLeod M.J., Duffy L.L., 2018. Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology, 72, 62-73. http://doi.org/10.1016/j.tifs.2017.11.015
  • 22. Kumar P., Kumar P., Manhas S., Navani N.K., 2016. A simple method for detection of anionic detergents in milk using unmodified gold nanoparticles. Sensors and Actuators B: Chemical, 233, 157-161. http://doi.org/10.1016/j.snb.2016.04.066
  • 23. Kumar N., Seth R., Kumar H., 2014. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Analytical biochemistry, 456, 43-49. http://doi.org/10.1016/j.ab.2014.04.002
  • 24. Krishna V.D., Wu K., Su D., Cheeran M.C., Wang J.P., Perez A., 2018. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food microbiology, 75, 47-54. http://doi.org/10.1016/j.fm.2018.01.025
  • 25. Kumar M., Jeong H., Lee D., 2018. UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires as transparent electrodes. Superlattices and Microstructures. http://doi.org/10.1016/j.spmi.2018.12.004
  • 26. Leonard P., Hearty S., Brennan J., Dunne L., Quinn J., Chakraborty T., O’Kennedy R., 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32[1], 3-13. http://doi.org/10.1016/S0141-0229(02)00232-6
  • 27. Liu S.F., Petty A.R., Sazama G.T., Swager T. M., 2015. Single-Walled carbon nanotube/ metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angewandte Chemie International Edition, 54 [22], 6554–6557. http://doi.org/10.1002/anie.201501434
  • 28. Rzeszutek J., Matysiak M., Czajka M., Sawicki K., Rachubik P., Kruszewski M., Kapka-Skrzypczak, L. [2014]. Application of nanoparticles and nanomaterials in medicine. Hygeia Public Health, 49[3], 449-457.
  • 29. Shim K., Kim J., Shahabuddin M., Yamauchi Y., Hossain M.S.A., Kim J.H., 2018. Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sensors and Actuators B: Chemical, 255, 2800-2808. http://doi.org/10.1016/j.snb.2017.09.096
  • 30. Suwanboon S., Chukamnerd S., Anglong U., 2007. Morphological control and optical properties of nanocrystalline ZnO powder from precipitation method. Songklanakarin Journal of Science & Technology, 29[6].
  • 31. Thomas M.K., Vriezen R., Farber J.M., Currie A., Schlech W., Fazil A., 2015. Economic cost of a Listeria monocytogenes outbreak in Canada, 2008. Foodborne Pathogens and Disease, 12[12], 966e971. http://doi.org/10.1089/fpd.2015.1965.
  • 32. Zhang W.H., Zhang W.D., 2008. Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sensors and Actuators B: Chemical, 134[2], 403-408. http://doi.org/10.1016/j.snb.2008.05.015
  • 33. Zhang Q., Zhang S., Xie C., Zeng D., Fan C., Li D., Bai Z., 2006. Characterization of Chinese vinegars by electronic nose. Sensors and Actuators B: Chemical, 119[2], 538-546. http://doi.org/10.1016/S0925-4005(98)00160-9
  • 34. Zhao X., et al., 2014. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24 [3], 297e312. http://doi.org/10.4014/jmb.1310.10013
  • 35. Zhang H., Ming H., Lian S., Huang H., Li H., Zhang L., Lee S.T., 2011. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Transactions, 40[41], 10822-10825. http://doi.org/10.1039/C1DT11147G
  • 36. Zheng D., Hu C., Gan T., Dang X., Hu S., 2010. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical, 148[1], 247-252.
  • 37. Zheng L., Zhang C., Ma J., Hong S., She Y., EI-Aty A.A., Wang J., 2018. Fabrication of a highly sensitive electrochemical sensor based on electropolymerized molecularly imprinted polymer hybrid nanocomposites for the determination of 4-nonylphenol in packaged milk samples. Analytical biochemistry, 559, 44-50.
  • 38. Yang M., Kostov Y., Bruck H.A., Rasooly A., 2009. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B [SEB] in food. International journal of food microbiology, 133[3], 265-271. http://doi.org/10.1016/j.ijfoodmicro.2009.05.029
  • 39. Valdés M.G., González A.C.V., Calzón J.A.G., Díaz-García M.E., 2009. Analytical nanotechnology for food analysis. Microchimica Acta, 166[1-2], 1-19. http://doi.org/10.1007/s00604-009-0165-z
  • 40. Wang Y., Fewins P.A., Alocilja E.C., 2015. IEEE Sensor. J. [15] 2015, 4692-4699.
  • 41. WHO, 2015. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015.
  • 42. Wu Q., Long Q., Li H., Zhang Y., Yao S., 2015. An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Talanta, 136, 47-53. http://doi.org/10.1016/j.talanta.2015.01.005
  • 43. Yuan J., Tao Z., Yu Y., Ma X., Xia Y., Wang L., Wang Z., Food Control [37]. 2014. 188-192. http://doi.org/10.1016/j.foodcont.2013.09.046
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f349850-b492-4b56-ac08-947e9403048c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.