PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A generative approach to hull design for a small watercraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of ocean engineering, the task of spatial hull modelling is one of the most complicated problems in ship design. This study presents a procedure applied as a generative approach to the design problems for the hull geometry of small vessels using elements of concurrent design with multi-criteria optimisation processes. Based upon widely available commercial software, an algorithm for the mathematical formulation of the boundary conditions, the data flow during processing and formulae for the optimisation processes are developed. As an example of the application of this novel approach, the results for the hull design of a sailing yacht are presented.
Słowa kluczowe
Rocznik
Tom
Strony
4--12
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
Bibliografia
  • 1. A. Papanikolaou, Ship Design, Methodologies of Preliminary Design, London: Springer, 2014, ISBN: 978-94-017-8751-2.
  • 2. R. Kołodziej and P. Hoffmann, “Numerical Estimation of Hull Hydrodynamic Derivatives in Ship Manoeuvring Prediction,” Polish Maritime Research, vol. 28, no. 2, p. 46 – 53, June 2021, https://doi.org/10.2478/pomr-2021-0020.
  • 3. Z. Baoji, “Research on Ship Hull Optimisation of HighSpeed Ship Based on Viscous Flow/Potential Flow Theory,” Polish Maritime Research, vol. 27, no. 1, pp. 18-28, March 2020, DOI: https://doi.org/10.2478/pomr-2020-0002.
  • 4. W. Tarełko, “The Effect of Hull Biofouling onParameters Characterising Ship Propulsion System Efficiency,” Polish Maritime Research, vol. 21, no. 4, pp. 27-34, December 2014, https://doi.org/10.2478/pomr-2014-0038.
  • 5. M. Kraskowski, “CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve Volume 29 (2022) - Issue 3 (Sep,” Polish Maritime Research, vol. 29, no. 3, p. 11 – 20, September 2022, https://doi.org/10.2478/ pomr-2022-0022.
  • 6. H. Ghaemi and H. Zeraatgar, “Impact of Propeller Emergence on Hull, Propeller, Engine, and Fuel Consumption Performance in Regular Head Waves,” Polish Maritime Research, vol. 29, no. 4, p. 56 – 76, December 2022, DOI: https://doi.org/10.2478/pomr-2022-0044.
  • 7. O. Kanifolskyi, “General Strength, Energy Efficiency (EEDI), and Energy Wave Criterion (EWC) of Deadrise Hulls for Transitional Mode,” Polish Maritime Research, vol. 29, no. 3, pp. 4-10, September 2022, https://doi.org/10.2478/ pomr-2022-0021.
  • 8. A. Papanikolaou, “Holistic ship design optimization,” Computer-Aided Design, pp. 1028-1044, 14 July 2009, https://doi.org/10.1016/j.cad.2009.07.002.
  • 9. A. Karczewski and J. Kozak, “Variants method approach to the preliminary ship design,” Mechanik, no. 12, pp. 1196-1198, 2017, DOI: https://doi.org/10.17814/ mechanik.2017.12.206.
  • 10. R. Shaw, “Art Amid Science: Retaining the Role of ‚The Designer’s Eye’ in Innovative Performance Yacht Design,” Journal of Sailing Technology, 2018, https://doi.org/10.5957. jst.2018.01.
  • 11. D. A. Schön, “Designing: rules, types and worlds,” Design Studies, vol. 9, no. 3, 1988, https://doi. org/10.1016/0142-694X(88)90047-6.
  • 12. A. Karczewski and M. Kunicka, “Influence of the Hull Shape on the Energy Demand of a Small Inland Vessel with Hybrid Propulsion,” Polish Maritime Research, vol. 28, no. 3, p. 35 – 43, September 2021, https://doi.org/10.2478/ pomr-2021-0032.
  • 13. V. Oduguwa, A. Tiwari and R. Roy, “Evolutionary computing in manufacturing industry: an overview of recent applications,” Applied Soft Computing, pp. 281-299, 2005, https://doi.org/10.1016/j.asoc.2004.08.003.
  • 14. S. Khan, E. Gunpinar and K. M. Dogan, “A novel design framework for generation and parametric modification of yacht hull surface,” Ocean Engineering, pp. 243-259, 15 May 2017, https://doi.org/10.1016/j.oceaneng.2017.03.013.
  • 15. D. E. Calkins, R. D. Schachter and L. T. Oliveira, “An automated computational method for planing hull form definition in concept design,” Ocean Engineering, p. 297–327., January 2001, https://doi.org/10.1016/ S0029-8018(99)00069-4.
  • 16. F. Perez, J. Clemente, J. A. Suarez and J. M. González, “Parametric generation, modeling, and fairing of simple hull lines with the use of non uniform rational b-spline surfaces,” Journal of Ship Research, p. 1–15, 2008, DOI:10.5957/jsr.2008.52.1.1.
  • 17. A. Mancuso, “Parametric design of sailing hull shapes,” Ocean Engineering, p. 234–246, 2005, https://doi. org/10.1016/j.oceaneng.2005.03.007.
  • 18. F. Perez-Arribas, “Parametric generation of planing hulls,” Ocean Engineering, p. 89–104, 2014, https://doi. org/10.1016/j.oceaneng.2014.02.016.
  • 19. I. Juhász, “Weight-based shape modification of NURBS curves,” Computer Aided Geometric Design, vol. 16, p. 377– 383, 1999, https://doi.org/10.1016/S0167-8396(99)00006-0.
  • 20. H. Nowacki, M. I. Bloor and B. Oleksiewicz, Computational Geometry for Ships, Singapore: World Scientific Publishing Co. Pte. Ltd., 1995, https://doi.org/10.1142/2633.
  • 21. R. McNeel and Associates, “https://www.rhino3d.com/,” [Online]. Available: https://www.rhino3d.com.
  • 22. S. Davidson, “https://www.grasshopper3d.com,” 2018. [Online].
  • 23. R. Vierlinger, “Octopus,” 6 Grudzień 2012. [Online]. Available: https://www.food4rhino.com/app/octopus.
  • 24. E. Ziztler, M. Laummanns and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103,” ETH Zentrum, Zurich, 2001, https://doi. org/10.3929/ethz-a-004284029.
  • 25. L. Larsson and R. Eliasson, Principles of Yacht Design, London: Adlard Coles Nautical, 2000, ISBN 9781472981936.
  • 26. ITTC, “Testing and Extrapolation Methods for Resistance Test, ITTC-Recommended Procedure, Procedure 7.5- 02-02-01,” 23rd International Towing Tank Conference, Venice, 2002.
  • 27. J. Keuning and M. Katgert, “A bare hull resistance prediction method derived from the results of the delft systematic yacht hull series extended to higher speeds,” in Innovsail20018, Lorient, 2008, ISBN: 978-905040-46-9.
  • 28. L. Huetz and B. Alessandrini, “Systematic study of the hydrodynamic forces on a sailing yacht hull using parametric design and CFD,” in 30th International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, 2011, DOI:10.1115/OMAE2011-50263.
  • 29. A. Karczewski, A. Malinowska and H. Pruszko, “Revision of estimated methods for total hull resistance calculation with using of towing tank experiment results for selected sail yacht,” Works of Faculty of Navigation of Gdynia Maritime University, no. 33, pp. 42-52, 2018.
  • 30. Rules for the Classification and Construction of Sea-going Yachts (JAC), Part I, Classification Regulations - July 2020, Gdańsk: Polish Ship Register, 2020.
  • 31. L. Ban Liang and J. Alstan Jakubiec, “A Three-Part Visualisation Framework to Navigate Complex MultiObjective (>3) Building Performance Optimisation Design Space,” 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f33530f-3f12-4f8b-8a9c-51983983facd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.