PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of dynamics of big size ZnGeP2 crystal growth by vertical Bridgman technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of a modelling of big size single crystal ZnGeP2 growth dynamics in the multi-zone thermal installation based on the vertical variant of the Bridgman technique are given. Trustworthiness of the results modeling is achieved by means of creation of the mathematical model taking into account the particularities of the installation as well as the changes in installation work volume during crystallization. Temperature field changes during crystal growth by numerical technique were examined. It is demonstrated that growth container moving has a significant impact on temperature field in work volume and crystallization isotherm local position. Thus, the actual crystal growth rate differs from the nominal velocity of growth container moving. The data received as a result of modelling should be taken into account in new equipment designing, crystallization process control system development and crystal growth experiments planning.
Rocznik
Strony
283--290
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
  • Tomsk Polytechnic University
autor
  • Tomsk Polytechnic University
autor
  • Tomsk Polytechnic University
autor
  • Tomsk Polytechnic University
autor
  • Tomsk Polytechnic University
autor
  • Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
  • Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
Bibliografia
  • [1] G.A. Verozubova, A.O. Okunev, A.I. Gribenyukov, A.Yu. Trofimiv, and E.M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals”, J. Cryst. Growth 312, 1122 (2010).
  • [2] L. Shen, B. Wang, D. Wu, and Z. Jiao, “Growth of low etch pit density ZnGeP2 crystals by the modified vertical Bridgman method”, J. Cryst. Growth 383, 79 (2013).
  • [3] X. Zhao, Sh. Zhu, B. Zhao, B. Chen, Zh. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of the ZnGeP2 single crystals by the modified vertical Bridgman method”, J. Cryst. Growth 311, 190 (2008).
  • [4] G. Zhang, X. Tao, Sh. Wang, G. Liu, Q. Shi, and M. Jiang, “Growth and thermal annealing effect on infrared transmittance of the ZnGeP2 single crystal”, J. Cryst. Growth 318, 717 (2011).
  • [5] J. Cheng, Sh. Zhu, B. Zhao, B. Chen, Zh. He, Q. Fan, and T. Xu, “Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry”, J. Cryst. Growth 362, 125 (2013).
  • [6] Sh. Xia, M. Wang, Ch. Yang, Z. Lei, G. Zhu, and B. Yao, “Vertical Bridgman growth and characterization of large ZnGeP2 single crystals” , J. Cryst. Growth 314, 306 (2011).
  • [7] M.M. Philippov, A.I. Gribenyukov, V.E. Ginsar, and Yu.V. Babushkin, “Improvement of spatial homogeneity of the ZnGeP2 single crystal growth by the Bridgman method in a vertical geometry”, Russian Phys. J. 55, 759 (2012).
  • [8] R.G. Seidensticker, W.R. Rosch, R. Mazelsky, R.H. Hopkins, N.B. Singh, S.R. Coriell, W.M.B. Duval, and C. Batur, “Active control of interface shape during the crystal growth of lead bromide”, J. Cryst. Growth 198, 988 (1999).
  • [9] M.M. Philippov, A.I. Gribenyukov, and Yu.V. Babushkin, “Sistema upravlenia technologichesich processov vyrashivania kristallov metodom Bridzhmana”, Sensors and systems 6, 2 (2012) (in Russian).
  • [10] G. Muller and J. Friedrich, “Challenges in modeling of bulk crystal growth”, J. Cryst. Growth 266, 1 (2004).
  • [11] M.A. Zaeem, H. Yin, and S.D. Felicelli, “Comparison of cellular automation and phase field models to simulate dendrite growth in hexagonal crystals”, J. Mater. Sci. Technol. 28, 137 (2012).
  • [12] G.M. Owolab and H.A. Whitworth, “Modeling and simulation of microstructurally small crack formation and growth in notched nickel-base superalloy component”, J. Mater. Sci. Technol. 30, 203 (2014). http://dx.doi.org/10.1016/j.jmst.2013.09.011.
  • [13] N. Song, Y. Luan, Y. Bai, Z.A. Xu, X. Kang, and D. Li, “Numerical simulation of solidification of work roll in centrifugal casting process”, J. Mater. Sci. Technol. 28, 147 (2012).
  • [14] J. Amon, P. Berwian, and G. Muller, “Computer-assisted growth of low-EPD GaAs with 3’’ diameter by the vertical gradient- freeze technique”, J. Cryst. Growth 198, 361 (1999).
  • [15] H. Ouyang and W. Shyy, “Numerical simulation of CdTe vertical Bridgman growth”, J. Cryst. Growth 173, 352 (1997).
  • [16] W.R. Rosch, A.L. Fripp, W.J. Debnam, and T.K. Pendergrass, “Performance testing of a vertical Bridgman furnace using experiments and numerical modeling”, J. Cryst. Growth 174, 139 (1997).
  • [17] M. Metzger, “Optimal control of crystal growth processes”, J. Crystal Growth 230, 210 (2001).
  • [18] A. Yeckel, G. Compere, A. Pandy, and J.J. Derby, “Three-dimensional imperfections in a model vertical Bridgman growth system for cadmium zinc telluride”, J. Cryst. Growth 263, 629 (2004).
  • [19] C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, “Numerical solution of phase-change problems”, International J. of Heat and Mass Transfer 16, 1825 (1973).
  • [20] E. Kuhl, H. Askes, and P. Steinmann, “An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation”, Computer Methods in Appl. Mechanics and Engineering 193, 4207 (2004). http://dx.doi.org/10.1016/j.cma.2003.09.030.
  • [21] R. Boman and J.-P. Ponthot, “Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of highspeed processes”, International j. of Impact Engineering 53, 62 (2013). http://dx.doi.org/10.1016/j.ijimpeng.2012.08.007.
  • [22] L. Braescu and T. F. George, “Arbitrary Lagrangian-Eulerian method for coupled Navier-Stokes and convection-diffusion equations with moving boundaries”, Proceedings of the 12th WSEAS Int. Conf. on Appl. Mathematics, pp. 31‒37, Part 1, Egypt, Cairo, 2007.
  • [23] COMSOL Multiphysics, (http://www.comsol.com, accessed 2014.12. 01).
  • [24] R.K. Willardson and H.L. Goering, Compound Semiconductors (Reinhold, New York, 1966).
  • [25] A.D. Sventchanskiy, Elektricheskie promyshlennye pechi [Electrical industrial furnaces] (Moskow, Energiya, 1975) (in Russian).
  • [26] B.V. Molotilov, Precizionnie splavi [Precision alloys] (Metallurgiya, Мoskow, 1983) (in Russian).
  • [27] D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, N.Y., 2005).
  • [28] TERMEX. (http://www.termexlab.ru accessed 2014.12.01).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f3079ac-0fa0-4e3e-91c9-81ff1eb68bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.