Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the shrimp shell-derived chitosan was coated onto rice husk-derived biochar to form chitosan/biochar bio-composite beads. The physicochemical properties of biochar (BC) and chitosan/biochar beads (CS@BC) were characterized by BET, SEM-EDX, FTIR, and pHpzc analyses, which were then tested for their capacity to remove Safranin O (SO) from water. In kinetics, the pseudo-second-order model was found to well represent experimental data, indicating the adsorption was mainly a chemical process. The intra-particle diffusion model was not the sole rate-limiting step, because the results did not pass through the origin. In isotherms, both the Langmuir and Freundlich models described well the equilibrium adsorption data. The CS@BC adsorbent showed adsorption capacity at 77.94 mg/g for SO, which is higher than BC adsorbent with 62.25 mg/g (experimental conditions: pH ~ 7.0, dosage = 0.2 g, contact time = 240 min, and temperature = 298 K). The findings revealed that the biochar-loaded chitosan can improve the adsorption capacity of SO. It is predicted that the enhancement in the functional groups (i.e., -NH2 and -OH groups) of CS@BC could contribute to the electrostatic interactions and the complexation between SO and CS@BC, thereby enhancing the Safranin O adsorption from water.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
248--259
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, College of the Environment and Natural Resources, Can Tho University, Can Tho 900000, Vietnam
autor
- Department of Environmental Engineering, College of the Environment and Natural Resources, Can Tho University, Can Tho 900000, Vietnam
autor
- Department of Environmental Science, College of the Environment and Natural Resources, Can Tho University, Can Tho 900000, Vietnam
Bibliografia
- 1. Afzal M.Z., Sun X.-F, Liu J., Song C., Wang S.-G, Javed A. 2018. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci Total Environ, 639, 560–569. https://doi.org/10.1016/j.scitotenv.2018.05.129
- 2. Ahmed M., Hameed B., Hummadi E. 2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr Polym, 247, 116690. https://doi.org/10.1016/j.carbpol.2020.116690
- 3. Ahmed M.B., Zhou J.L., Ngo H.H., Guo W., Chen M. 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol, 214, 836–851. https://doi.org/10.1016/j.biortech.2016.05.057
- 4. Alguacil F.J., Lopez F.A. 2021. Adsorption processes in the removal of organic dyes from wastewaters: very recent developments. In: Moujdin I.A., Summers J.K. Eds. Promising techniques for wastewater treatment and water quality assessment. Intechopen, 17–32. https://doi.org/10.5772/intechopen.94164
- 5. Amalraj A., Jude S., Gopi S. 2020. Polymer blends, composites and nanocomposites from chitin and chitosan; manufacturing, characterization and applications. In: Thomas S., Pius A., & Gopi S. Eds. Handbook of Chitin and Chitosan. Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier, 1–42. https://doi.org/10.1016/B978-0-12-817968-0.00001-9
- 6. Crini G., Torri G., Lichtfouse E., Kyzas G.Z., Wilson L.D., Morin-Crini N. 2019. Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett, 17(4), 1645–1666. https://doi.org/10.1007/s10311-019-00903-y
- 7. Dewage N.B., Fowler R.E., Pittman C.U., Mohan D., Mlsna T. 2018. Lead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. Rsc Adv, 8(45), 25368–25377. https://doi.org/10.1039/C8RA04600J
- 8. Dotto G.L., Vieira M.L., Pinto L.A. 2012. Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan. Ind Eng Chem Res, 51(19), 6862-8. https://doi.org/10.1021/ie2030757
- 9. Dutta S., Gupta B., Srivastava S.K., Gupta A.K. 2021. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater Adv, 2, 4497–4531. https://doi.org/10.1039/D1MA00354B
- 10. Gadekar M.R., Ahammed M.M. 2020. Use of water treatment residuals for colour removal from real textile dye wastewater. Appl Water Sci, 10(7), 1–8. https://doi.org/10.1007/s13201-020-01245-9
- 11. Gao N., Du W., Zhang M., Ling G., Zhang P. 2022. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. Int J Biol Macromol, 209, 31–49. https://doi.org/10.1016/j.ijbiomac.2022.04.006
- 12. Hammood Z.A., Chyad T.F., Al-Saedi R. 2021. Adsorption performance of dyes over zeolite for textile wastewater treatment. Ecol Chem Eng, 28(3), 329–337. https://doi.org/10.2478/eces-2021-0022
- 13. Huang A., Bai W., Yang S., Wang Z., Wu N., Zhang Y., et al. 2022. Adsorption characteristics of chitosan-modified bamboo biochar in Cd (II) contaminated water. J Chem, 1–10. https://doi.org/10.1155/2022/6303252
- 14. Jindo K., Mizumoto H., Sawada Y., Sanchez-Monedero M., Sonoki T. 2014. Physical and chemical characterizations of biochars derived from different agricultural residues. Biogeosci Discuss, 11(8). https://doi.org/10.5194/bg-11-6613-2014
- 15. Karam D.S., Nagabovanalli P., Rajoo K.S., Ishak C.F., Abdu A., Rosli Z., et al. 2021. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J Saudi Soc Agric Sci, 21, 149–159. https://doi.org/10.1016/j.jssas.2021.07.005
- 16. Kausar A., Iqbal M., Javed A., Aftab K., Bhatti H.N., Nouren S. 2018. Dyes adsorption using clay and modified clay: a review. J Mol Liq, 256, 395–407. https://doi.org/10.1016/j.molliq.2018.02.034
- 17. Kheddo A., Rhyman L., Elzagheid M.I., Jeetah P., Ramasami P. 2020. Adsorption of synthetic dyed wastewater using activated carbon from rice husk. SN Appl Sci, 2(12), 1–14. https://doi.org/10.1007/s42452-020-03922-5
- 18. Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol, 8(3), 203–226. https://doi.org/10.1007/s10126-005-0097-5
- 19. Le H.Q., Sekiguchi Y., Ardiyanta D., Shimoyama Y. 2018. CO2-activated adsorption: a new approach to dye removal by chitosan hydrogel. ACS Omega, 3(10), 14103–14110. https://doi.org/10.1021/acsomega.8b01825
- 20. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
- 21. Liu S., Huang B., Chai L., Liu Y., Zeng G., Wang X., et al. 2017. Enhancement of As (V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv, 7(18), 10891–10900. https://doi.org/10.1039/C6RA27341F
- 22. Lyu H., Xu S., Liu Y., Zhang W., Duan Q., Zhu M., et al. 2022. Effect of biochar on the emission of greenhouse gas in farmland. In Tsang D.C.W, Ok Y.S. Eds. Biochar in agriculture for achieving sustainable development goals. Academic Press, 251–262.
- 23. Ma Z., Du W., Yan Z., Chen X., Wang Y., Mao Z. 2021. Removal of Phloridzin by chitosan-modified biochar prepared from apple branches. Anal Lett, 54(5), 903–918. https://doi.org/10.1080/00032719.2020.1786696
- 24. Mehmood S., Ahmed W., Ikram M., Imtiaz M., Mahmood S., Tu S., et al. 2020. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants, 9(9), 1173. https://doi.org/10.3390/plants9091173
- 25. Palniandy L.K., Yoon L.W., Wong W.Y., Yong S.-T, Pang M.M. 2019. Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells. Energies, 12(13), 2477. https://doi.org/10.3390/en12132477
- 26. Pang Y.L., Tan J.H., Lim S., Chong W.C. 2021. A State-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic Dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers, 13(17), 3009. https://doi.org/10.3390/polym13173009
- 27. Paz A., Carballo J., Pérez M.J, Domínguez J.M. 2017. Biological treatment of model dyes and textile wastewaters. Chemosphere, 181, 168–177. https://doi.org/10.1016/j.chemosphere.2017.04.046
- 28. Perumal S., Atchudan R., Yoon D.H., Joo J., Cheong I.W. 2019. Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater. Ind Eng Chem Res, 58(23), 9900–9907. https://doi.org/10.1021/acs.iecr.9b01298
- 29. Phuong D., Loc N., Miyanishi T. 2019. Efficiency of dye adsorption by biochars produced from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. Desalin Water Treat, 165, 333–351. https://doi.org/10.5004/dwt.2019.24496
- 30. Phuong D.T.M., Loc N.X. 2022. Rice straw biochar and magnetic rice straw biochar for Safranin O adsorption from aqueous Solution. Water, 14(2), 186. https://10.3390/w14020186
- 31. Radwan M.A., Farrag S.A., Abu-Elamayem M.M., Ahmed N.S. 2012. Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biol Fertil Soils, 48(4), 463–468. https://doi.org/10.1007/s00374-011-0632-7
- 32. Sahu M.K., Sahu U.K., Patel R.K. 2015. Adsorption of safranin-O dye on CO2 neutralized activated red mud waste: process modelling, analysis and optimization using statistical design. RSC Adv. 5(53), 42294–42304. https://doi.org/10.1039/C5RA03777H
- 33. Sajjadi B., Zubatiuk T., Leszczynska D., Leszczynski J., Chen W.Y. 2019. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng, 35(7), 777–815. https://doi.org/10.1515/revce-2018-0003
- 34. Shi Y., Hu H., Ren H. 2020. Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms. Bioresour Technol, 297, 122281. https://doi.org/10.1016/j.biortech.2019.122281
- 35. Song J., Messele S.A., Meng L., Huang Z., El-Din M.G. 2021. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. Water Res, 194,116930. https://doi.org/10.1016/j.watres.2021.116930
- 36. Srivatsav P., Bhargav B.S., Shanmugasundaram V., Arun J., Gopinath K.P., Bhatnagar A. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12(12), 3561. https://doi.org/10.3390/w12123561
- 37. Sutar S., Patil P., Jadhav J. 2022. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ Res, 209, 112841. https://doi.org/10.1016/j.envres.2022.112841
- 38. Udawatta M., De Silva R., De Silva D. 2022. Surface modification of Trema orientalis wood biochar using natural coconut vinegar and its potential to remove aqueous calcium ions: column and batch studies. Environ Eng Res, 28(1). https://doi.org/10.4491/eer.2021.522
- 39. Uddin M.J., Ampiaw R.E., Lee W. 2021. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere, 284, 131314. https://doi.org/10.1016/j.chemosphere.2021.131314
- 40. Vigneshwaran S., Sirajudheen P., Nikitha M., Ramkumar K., Meenakshi S. 2021. Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: Isotherm, kinetics and mechanisms. J Mol Liq, 326, 115303. https://doi.org/10.1016/j.molliq.2021.115303
- 41. Wang J., Yao J., Wang L., Xue Q., Hu Z., Pan B. 2020. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Sep Purif Technol, 230, 115851. https://doi.org/10.1016/j.seppur.2019.115851
- 42. Wang L., Ok Y.S., Tsang D.C., Alessi D.S., Rinklebe J., Wang H., et al. 2020. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag, 36(3), 358–386. https://doi.org/10.1111/sum.12592
- 43. Xiang J., Lin Q., Yao X., Yin G. 2021. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environ Res, 195, 110650. https://doi.org/10.1016/j.envres.2020.110650
- 44. Zhang L., Tang S., He F., Liu Y., Mao W., Guan Y. 2019. Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem Eng J, 378, 122215. https://doi.org/10.1016/j.cej.2019.122215
- 45. Zhang Z., He S., Zhang Y., Zhang K., Wang J., Jing R., et al. 2019. Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms. Environ Pollut, 254, 112938. https://doi.org/10.1016/j.envpol.2019.07.106
- 46. Zhou Y., Gao B., Zimmerman A.R., Fang J., Sun Y., Cao X. 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J, 231, 512–518. http://dx.doi.org/10.1016/j.cej.2013.07.036
- 47. Zhu C., Lang Y., Liu B., Zhao H. 2018. Ofloxacin adsorption on chitosan/biochar composite: Kinetics, isotherms, and effects of solution chemistry. Polycyc Aromat Compd, 287–297. https://doi.org/10.1080/10406638.2018.1464039
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f2f1669-7d88-458c-8992-cbc107ca042c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.