PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A 3D Bayesian Computed Tomography Reconstruction Algorithm with Gauss-Markov-Potts Prior Model and its Application to Real Data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iterative reconstruction methods in Computed Tomography (CT) are known to provide better image quality than analytical methods but they are not still applied in many fields because of their computational cost. In the last years, Graphical Processor Units (GPU) have emerged as powerful devices in order to parallelize calculations, but the efficiency of their use is conditionned on applying algorithms that can be massively parallelizable. Moreover, in non-destructive testing (NDT) applications, a segmentation of the reconstructed volume is often needed in order to have an accurate diagnosis on the material health, but performing a segmentation after the reconstruction introduces uncertainties in the diagnosis from both the reconstruction and the segmentation algorithms. In this paper, we propose an iterative reconstruction method for 3D CT that performs a joint reconstruction and segmentation of the controlled object in NDT for industrial applications. The method is based on a 3D Gauss-Markov-Potts prior model in Bayesian framework, which has shown its effective use in many image restoration and super-resolution problems. First, we briefly describe this model, before deriving the expression of the joint posterior distribution of all the unknowns. Next, an effective maximization of this distribution is presented. We use a ray-driven projector and a voxel-driven backprojector implemented on GPU. The algorithm is developed so it can be massively parallelized. Finally, we present our results on simulated and real phantoms. In addition, we investigate further reconstruction quality indicators in order to compare our results with other methods.
Wydawca
Rocznik
Strony
373--405
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Laboratoire des signaux et systèmes, CNRS, CentraleSupélec-Université Paris-Saclay, SAFRAN SA, Safran Tech, Pôle Technologie du Signal et de l’Information, France
  • Laboratoire des signaux et systèmes, CNRS, CentraleSupélec-Université Paris-Saclay, SAFRAN SA, Safran Tech, Pôle Technologie du Signal et de l’Information, France
autor
  • Laboratoire des signaux et systèmes, CNRS, CentraleSupélec-Université Paris-Saclay, SAFRAN SA, Safran Tech, Pôle Technologie du Signal et de l’Information, France
autor
  • Laboratoire des signaux et systèmes, CNRS, CentraleSupélec-Université Paris-Saclay, SAFRAN SA, Safran Tech, Pôle Technologie du Signal et de l’Information, France
Bibliografia
  • [1] Radon J. 1.1 Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Classic papers in modern diagnostic radiology. 2005;5.
  • [2] Smith KT, Keinert F. Mathematical foundations of computed tomography. Applied Optics. 1985;24(23): 3950–3957.
  • [3] Rodet T. Algorithmes rapides de reconstruction en tomographie par compression des calculs: application `a la tomofluoroscopie 3D. Grenoble, INPG; 2002.
  • [4] Feldkamp L, Davis L, Kress J. Practical cone-beam algorithm. JOSA A. 1984;1(6):612–619. URL https://doi.org/10.1364/JOSAA.1.000612.
  • [5] Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM Journal on Applied Mathematics. 2002;62(6):2012–2026. URL https://doi.org/10.1137/S0036139901387186.
  • [6] Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT. Physics in medicine and biology. 2002;47(15):2583. URL http://stacks.iop.org/0031-9155/47/i=15/a=302.
  • [7] Kudo H, Rodet T, Noo F, Defrise M. Exact and approximate algorithms for helical cone-beam CT. Physics in medicine and biology. 2004;49(13):2913.
  • [8] De Rosier D, Klug A. Reconstruction of three dimensional structures from electron micrographs. Nature. 1968;217(5124):130–134. doi:10.1038/217130a0.
  • [9] Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding [computerized tomography application]. Medical Imaging, IEEE Transactions on. 1991;10(3):473–478. doi:10.1109/42.97598.
  • [10] Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of theoretical Biology. 1970;29(3):471–481. URL https://doi.org/10.1016/0022-5193(70)90109-8.
  • [11] Idier J. Approche bayésienne pour les problèmes inverses. Hermès Science Publications; 2001. ISBN-10:2746203480, 13:978-2746203488.
  • [12] Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of theoretical biology. 1972;36(1):105–117. doi:10.1016/0022-5193(72)90180-4.
  • [13] Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic imaging. 1984;6(1):81–94. doi:10.1177/016173468400600107.
  • [14] Mohammad-Djafari A, Demoment G. Maximum entropy image reconstruction in X-ray and diffraction tomography. Medical Imaging, IEEE Transactions on. 1988;7(4):345–354. doi:10.1109/42.14518.
  • [15] Gac N, Vabre A, Mohammad-Djafari A, Rabanal A, Buyens F. GPU implementation of a 3D Bayesian CT algorithm and its application on real foam reconstruction. In: The First International Conference on Image Formation in X-Ray Computed Tomography; 2010. p. 151–155.
  • [16] Batenburg KJ, Sijbers J. DART: a practical reconstruction algorithm for discrete tomography. Image Processing, IEEE Transactions on. 2011;20(9):2542–2553. doi:10.1109/TIP.2011.2131661.
  • [17] Bleichrodt F. Improving robustness of tomographic reconstruction methods. Mathematical Institute, Faculty of Science, Leiden University; 2015. ISBN:9789462598690.
  • [18] Sidky EY, Jakob H, Pan X, et al. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle & Pock algorithm. Physics in medicine and biology. 2012;57(10):3065.
  • [19] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision. 2011;40(1):120–145. doi:10.1007/s10851-010-0251-1.
  • [20] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics. 1989;42(5):577–685. doi:10.1002/cpa.3160420503.
  • [21] Storath M, Weinmann A, Frikel J, Unser M. Joint image reconstruction and segmentation using the Potts model. Inverse Problems. 2015;31(2):025003. URL http://stacks.iop.org/0266-5611/31/i=2/a=025003.
  • [22] Féron O, Duchêne B, Mohammad-Djafari A. Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data. Inverse Problems. 2005;21(6):S95. URL http://stacks.iop.org/0266-5611/21/i=6/a=S08.
  • [23] Féron O. Champs de Markov cachés pour les problèmes inverses. Application à la fusion de données et à la reconstruction dimages en tomographie micro-onde. Thèse de Doctorat, Université de Paris-Sud, Orsay; 2006.
  • [24] Ayasso H. Une approche bayésienne de l’inversion. Application `a l’imagerie de diffraction dans les domaines micro-onde et optique. Université Paris Sud-Paris XI; 2010.
  • [25] Ayasso H, Mohammad-Djafari A. Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation. Image Processing, IEEE Transactions on. 2010;19(9):2265–2277.
  • [26] Ayasso H, Duchêne B, Mohammad-Djafari A. Bayesian inversion for optical diffraction tomography. Journal of Modern Optics. 2010;57(9):765–776. URL http://dx.doi.org/10.1080/09500340903564702.
  • [27] Dumitru M. Approche bayésienne de l’estimation des composantes périodiques des signaux en chronobiologie. Paris Saclay; 2016. URL https://tel.archives-ouvertes.fr/tel-01318048/file/76211 DUMITRU 2016 diffusion.pdf.
  • [28] Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physical Review. 1944;65(3-4):117.
  • [29] Huang K. Statistical mechanics. Wiley; 1987. ISBN-13:978-0471815181, 10:0471815187.
  • [30] Giovannelli JF. Estimation of the Ising field parameter thanks to the exact partition function. In: ICIP; 2010. p. 1441–1444. doi:10.1109/ICIP.2010.5650185.
  • [31] Mohammad-Djafari A, Ayasso H. Variational Bayes and mean field approximations for Markov field unsupervised estimation. In: 2009 IEEE International Workshop on Machine Learning for Signal Processing. IEEE; 2009. p. 1–6. doi:10.1109/MLSP.2009.5306261.
  • [32] Pereyra M, Schniter P, Chouzenoux E, Pesquet JC, Tourneret JY, Hero AO, et al. A survey of stochastic simulation and optimization methods in signal processing. IEEE Journal of Selected Topics in Signal Processing. 2016;10(2):224–241. doi:10.1109/JSTSP.2015.2496908.
  • [33] Zhang J. The mean field theory in EM procedures for Markov random fields. IEEE Transactions on signal processing. 1992;40(10):2570–2583.
  • [34] Zhang J. The mean field theory in EM procedures for blind Markov random field image restoration. IEEE Transactions on Image Processing. 1993;2(1):27–40.
  • [35] Zhao N, Basarab A, Kouame D, Tourneret JY. Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors. IEEE transactions on Image Processing. 2016;25(8):3736–3750. doi:10.1109/TIP.2016.2567074.
  • [36] Féron O, Orieux F, Giovannelli JF. Echantillonnage de champs gaussiens de grande dimension. In: 42èmes Journées de Statistique; 2010.
  • [37] Orieux F, Féron O, Giovannelli JF. Sampling high-dimensional Gaussian distributions for general linear inverse problems. IEEE Signal Processing Letters. 2012;19(5):251–254. doi:10.1109/LSP.2012.2189104.
  • [38] Gilavert C, Moussaoui S, Idier J. Efficient Gaussian sampling for solving large-scale inverse problems using MCMC. IEEE Transactions on Signal Processing. 2015;63(1):70–80. doi:10.1109/TSP.2014.2367457.
  • [39] Pereyra M, Dobigeon N, Batatia H, Tourneret JY. Segmentation of skin lesions in 2-D and 3-D ultrasound images using a spatially coherent generalized Rayleigh mixture model. IEEE transactions on medical imaging. 2012;31(8):1509–1520. doi:10.1109/TMI.2012.2190617.
  • [40] Gonzalez J, Low Y, Gretton A, Guestrin C. Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees. In: AISTATS. vol. 15; 2011. p. 324–332. URL http://proceedings.mlr.press/v15/gonzalez11a.html.
  • [41] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis and machine intelligence. 2001;23(11):1222–1239. doi:10.1109/34.969114.
  • [42] Greig DM, Porteous BT, Seheult AH. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B (Methodological). 1989; p. 271–279.
  • [43] Ford LR, Fulkerson D. Flow in networks. Princeton University Press; 1962.
  • [44] Strandmark P, Kahl F. Parallel and distributed graph cuts by dual decomposition. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE; 2010. p. 2085–2092. doi:10.1109/CVPR.2010.5539886.
  • [45] Goldschlager LM, Shaw RA, Staples J. The maximum flow problem is log space complete for P. Theoretical Computer Science. 1982;21(1):105–111.
  • [46] Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society Series B (Methodological). 1986; p. 259–302.
  • [47] Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner HW. Markov random field segmentation of brain MR images. IEEE transactions on medical imaging. 1997;16(6):878–886. doi:10.1109/42.650883.
  • [48] Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging. 2001;20(1):45–57. doi:10.1109/42.906424.
  • [49] Huang F, Narayan S, Wilson D, Johnson D, Zhang GQ. A Fast Iterated Conditional Modes Algorithm for Water-Fat Decomposition in MRI. IEEE transactions on medical imaging. 2011;30(8):1480–1492. doi:10.1109/TMI.2011.2125980.
  • [50] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence. 1984;(6):721–741. doi:10.1109/TPAMI.1984.4767596.
  • [51] Schmidt M, Alahari K. Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves. arXiv preprint arXiv:11085710. 2011.
  • [52] Shepp LA, Logan BF. The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science. 1974;21(3):21–43. doi:10.1109/TNS.1974.6499235.
  • [53] Gay L, Arslan P, Rambourg Y, Chandelle A, inventors; Fantôme destiné à être utilisé pour le contrôle de la qualité d’images tomographiques. 3030753; 2016.
  • [54] Gac N, Mancini S, Desvignes M, Houzet D. High speed 3D tomography on CPU, GPU, and FPGA. EURASIP Journal on Embedded systems. 2008;2008:5. doi:10.1155/2008/930250.
  • [55] Peters T. Algorithms for fast back-and re-projection in computed tomography. IEEE transactions on nuclear science. 1981;28(4):3641–3647. doi:10.1109/TNS.1981.4331812.
  • [56] Joseph PM. An improved algorithm for reprojecting rays through pixel images. IEEE transactions on medical imaging. 1982;1(3):192–196. doi:10.1109/TMI.1982.4307572.
  • [57] Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Medical physics. 1985;12(2):252–255. doi:10.1118/1.595715.
  • [58] Jacobs F, Sundermann E, De Sutter B, Christiaens M, Lemahieu I. A fast algorithm to calculate the exact radiological path through a pixel or voxel space. CIT Journal of computing and information technology. 2015;6(1):89–94.
  • [59] Zeng GL, Gullberg GT. Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE transactions on medical imaging. 2000;19(5):548–555. doi:10.1109/42.870265.
  • [60] MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. vol. 1. Oakland, CA, USA; 1967. p. 281–297.
  • [61] Kurugollu F, Sankur B, Harmanci AE. Color image segmentation using histogram multithresholding and fusion. Image and vision computing. 2001;19(13):915–928. doi:10.1016/S0262-8856(01)00052-X
  • [62] Koontz WLG, Narendra PM, Fukunaga K. A graph-theoretic approach to nonparametric cluster analysis. IEEE Transactions on Computers. 1976;100(9):936–944.
  • [63] Pereyra M, Dobigeon N, Batatia H, Tourneret JY. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm. Image Processing, IEEE Transactions on. 2013;22(6):2385–2397. doi:10.1109/TIP.2013.2249076.
  • [64] Pereyra M, Whiteley N, Andrieu C, Tourneret JY. Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm. In: 2014 IEEE Workshop on Statistical Signal Processing (SSP). IEEE; 2014. p. 121–124. doi:10.1109/SSP.2014.6884590.
  • [65] Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences. 2009;2(2):323–343. URL https://doi.org/10.1137/080725891.
  • [66] Bregman LM. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR computational mathematics and mathematical physics. 1967;7(3):200–217.
  • [67] Rosu RG, Giovannelli JF, Giremus A, Vacar C. Potts model parameter estimation in Bayesian segmentation of piecewise constant images. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2015. p. 4080–4084. doi:10.1109/ICASSP.2015.7178738.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f28862d-e071-4345-a374-d874518ae01d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.