PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moving-fuzzy sliding mode control of aircraft wing-rock motion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work represents a moving fuzzy sliding mode controller (SMC) to suppress the wing-rock motion, a self-sustaining cycle oscillation caused by the nonlinear coupling between the unsteady aerodynamic forces and the dynamic response of the aircraft. Based on fuzzy systems, a moving algorithm is designed to estimate the unknown nonlinear dynamic function of the system in the control topology. The fuzzy algorithm is formulated by taking the width’s value, and based on Lyapunov theory, the membership function’s mean vector is adapted online. Simulation results, for examples that include small and large initial conditions, demonstrate the effectiveness of the proposed fuzzy sliding mode controller.
Rocznik
Strony
743--762
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Laboratory of Sciences and Techniques of Automatic control computer engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax, Postal Box 1173, 3038 Sfax, Tunisia
  • Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
  • Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
  • Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Bibliografia
  • [1] Guo Y., Luo L., Bao C., Design of a Fixed-Wing UAV Controller Combined Fuzzy Adaptive Method and Sliding Mode Control, Mathematical Problems in Engineering, vol. 2022, no. 2812671 (2022), DOI: 10.1155/2022/2812671.
  • [2] Li D., Tsourdos A., Wang Z., Ignatyev D., Nonlinear Analysis for Wing-Rock System with Adaptive Control, Journal of Guidance, Control, and Dynamics, vol. 11, pp. 2174–2181 (2022), DOI: 10.2514/1.G006775.
  • [3] Wu D., Chen M., Gong H., Wu Q., Robust backstepping control of wing rock using disturbance observer, Applied Sciences, vol. 7, no. 3, 219 (2017), DOI: 10.3390/app7030219.
  • [4] Tavoosi J., A new type-2 fuzzy sliding mode control for longitudinal aerodynamic parameters of a commercial aircraft, Journal Européen des Systèmes Automatisés, vol. 53, no. 4, pp. 479–485 (2020), DOI: 10.18280/jesa.530405.
  • [5] Deng Z., Wu L., You Y., Modeling and design of an aircraft-mode controller for a fixed-wing VTOL UAV, Mathematical Problems in Engineering, vol. 2021, pp. 1–17 (2021), DOI: 10.1155/2021/7902134.
  • [6] Aljohani A.J., Mehedi I.M., Bilal M., Mahmoud M., Meem R.J., Iskanderani A.I., Alam M.M., Alasmary W., Rotary flexible joint control using adaptive fuzzy sliding mode scheme, Computational Intelligence and Neuroscience, vol. 2022 (2022), DOI: 10.1155/2022/2613075.
  • [7] Hemza M., Robust adaptive control of coaxial octorotor UAV using type-1 and interval type-2 fuzzy logic systems, vol. 73, no. 4, pp. 158–170 (2018), DOI: 10.18280/ama_c.730405.
  • [8] Singh S.N., Yirn W., Wells W.R., Direct adaptive and neural control of wing-rock motion of slender delta wings, Journal of Guidance, control, and Dynamics, vol. 18, no. 1, pp. 25–30 (1995), DOI: 10.2514/3.56652.
  • [9] Sreenatha A.G., Nair N.K., Sudhakar K., Aerodynamic Suppression of Wing Rock Using Fuzzy Logic Control, Journal of aircraft, vol. 37, no. 2, pp. 345–348 (2000), DOI: 10.2514/2.2602.
  • [10] Manring N.D., Muhi L., Fales R.C., Mehta V.S., Kuehn J., Peterson J., Using Feedback Linearization to Improve the Tracking Performance of a Linear Hydraulic-Actuator, J. Dyn. Sys., Meas., Control., vol. 1, no. 140, 011009 (2018), DOI: 10.1115/1.4037285.
  • [11] Howlader A.M., Urasaki N., Yona A., Senjyu T., Saber A.Y., Design and Implement a Digital H∞ Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System, vol. 4, no. 6, pp. 2084–2109 (2013), DOI: 10.3390/en6042084.
  • [12] Damani A.Y., Benselama Z.A., Hedjar R., Formation control of nonholonomic wheeled mobile robots using adaptive distributed fractional order fast terminal sliding mode control, Archive of Mechanical Engineering, vol. 70, no. 4, pp. 567–587 (2023), DOI: 10.24425/ame.2023.148700.
  • [13] Shin Y.H., Adaptive Control System Designs for Aircraft Wing Rock, vol. 39, no. 8, pp. 725–734 (2011), DOI: 10.5139/JKSAS.2011.39.8.725.
  • [14] Monahemi M.M., Krstic M., Control of wing rock motion using adaptive feedback linearization, Journal of Guidance, Control, and Dynamics, vol. 19, no. 4, pp. 905–912 (1996), DOI: 10.2514/3.21717.
  • [15] Guo Y., Luo L., Bao C., Design of a Fixed-Wing UAV Controller Combined Fuzzy Adaptive Method and Sliding Mode Control, Mathematical Problems in Engineering, vol. 2022 (2022), DOI: 10.1155/2022/2812671.
  • [16] Larguech S., Aloui S., Pagès O., El Hajjaji A., Chaari A., Adaptive type-2 fuzzy sliding mode control for MIMO nonlinear systems: application to a turbocharged diesel engine, in 2015 23rd Mediterranean Conference on Control and Automation (MED) (2015), DOI: 10.1109/MED.2015.7158751.
  • [17] Delmotte F., Hadj Taieb N., Hammami M.A., Meghnafi H., An observer design for Takagi-Sugeno fuzzy bilinear control systems, Archives of Control Sciences, vol. 33, no. 3, pp. 631–649 (2023), DOI: 10.24425/acs.2023.146959.
  • [18] Echreshavi Zeinab, Mohsen Farbood, Mokhtar Shasadeghi, Saleh Mobayen, Reliable fuzzy control of uncertain nonlinear networked systems under actuator faults, ISA transactions 141, pp. 157–166 (2023), DOI: 10.1016/j.isatra.2023.07.007.
  • [19] Nafia N., El Kari A., Ayad H., Mjahed M., Robust full tracking control design of disturbed quadrotor UAVs with unknown dynamics, Aerospace, vol. 5, no. 4, p. 115 (2018), DOI: 10.3390/aerospace5040115.
  • [20] Baklouti F., Aloui S., Chaari A., Adaptive Fuzzy Sliding Mode Tracking Control of Uncertain Underactuated Nonlinear Systems, Journal of Control Science and Engineering, vol. 2016, p. 6 (2016), DOI: 10.1155/2016/9283103.
  • [21] Farbood Mohsen, Mokhtar Shasadeghi, Taher Niknam, Behrouz Safarinejadian, Afshin Izadian, Cooperative H∞ Robust Move Blocking Fuzzy Model Predictive Control of Nonlinear Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2023), DOI: 10.1109/TSMC.2023.3299283.
  • [22] Farbood Mohsen, Zeinab Echereshavi, Mokhtar Shasadeghi, Saleh Mobayen, Paweł Skruch, Disturbance Observer-based Data Driven Model Predictive Tracking Control of Linear Systems, IEEE Access (2023), DOI: 10.1109/ACCESS.2023.3305496.
  • [23] Larguech S., Aloui S., Pagès O., El Hajjaji A., Chaari A., Fuzzy sliding mode control for turbocharged diesel engine, Journal of Dynamic Systems, Measurement, and Control, vol. 138, 011009 (2016), DOI: 10.1115/1.4031913.
  • [24] Shen Hao, Yun Wang, Jing Wang, Ju H. Park., A Fuzzy-Model-Based Approach to Optimal Control for Nonlinear Markov Jump Singularly Perturbed Systems: A Novel Integral Reinforcement Learning Scheme, IEEE Transactions on Fuzzy Systems (2023), DOI: 10.1109/TFUZZ.2023.3265666.
  • [25] Echreshavi Zeinab, Mohsen Farbood, Mokhtar Shasadeghi, Disturbance observer-based fuzzy eventtriggered ISMC design: Tracking performance, ISA Transactions 138, pp. 243–253 (2023), DOI: 10.1016/j.isatra.2023.03.014.
  • [26] Rong H.J., Han S., Zhao G.S., Adaptive fuzzy control of aircraft wing-rock motion, Applied Soft Computing, vol. 14, pp. 181–193 (2014), DOI: 10.1016/j.asoc.2013.03.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f25225a-1c2e-4a2e-bbda-e2c35cd57181
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.