PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization of axial flux permanent magnet generator by Taguchi experimental method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the optimization of air gap magnetic flux density of open slotted axial flux permanent magnet (AFPM) machine which was developed for wind turbine has been obtained using the Taguchi experimental method. For this, magnetic analyzes were performed by ANSYS Maxwell program according to Taguchi table. Then the optimum values have been determined and the average magnetic flux density values have been calculated for air gap and iron core under load and no-load conditions with ANSYS Maxwell. Traditionally, 15625 analyzes are required for 6 independent variables and 5 levels when experimental method is used. In this study, optimum values are determined by 25 magnetic analyzes, which use L25 orthogonal array. For this purpose, both factor effect graph and signal to noise ratios are used, according to the factors and levels which are obtained from the factor effect graph and the signal to noise ratio. Parameters are re-analyzed by Maxwell. The optimum factors and levels are determined. For optimized values, the air gap magnetic flux density is improved by 65.7% and 173.26%, respectively, according to the average value and the initial design. Therefore, the variables are optimized in a shorter time with Taguchi experimental design method instead of the traditional design method for open slotted AFPM generator. In addition, the results were analyzed statistically using ANOVA and Regression model. The variables were found to be significant by ANOVA. The degree of influence of the variables on the air gap magnetic flux density was also determined by the Regression model.
Rocznik
Strony
409--419
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Kırklareli University, Faculty of Technology, Department of Energy Systems Engineering, Kayalı Campus, Kırklareli, Turkey
Bibliografia
  • [1] A. Smolen and M. Golebiowski, “Computationally efficient method for detemining the most important electrical parameters of axial field permanent magnet machine”, Bull. Pol. Ac.: Tech. 66(16), 947–959, (2018).
  • [2] A. Pantea, A. Yazidi, F. Betin, G.A. Capolino, and V. Lanfranchi, “Six–phase axial flux permanent magnet generator model: simulation and experimental validation”, IEEE 25th International Symposium on Industrial Electronics, 2016.
  • [3] A. Nataraj and B. Ramasamy, “Modeling and FEA Analysis of Axial Flux PMG for Low Speed Wind Turbine Applications”, IEEE International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1–5, Kollam, India, 2017.
  • [4] Z.Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines”, IEEE Transactions on Energy Conversion, 15 (4), 407 – 412 (2000).
  • [5] X. Sun, B. Su, L. Chen, Z. Yang, and K. Li, “Design and analysis of interior composite–rotor bearingless permanent magnet synchronous motors with two layer permanent magnets”, Bull. Pol. Ac.: Tech. 65(6), 833–843, (2017).
  • [6] E. Aycicek, N. Bekiroglu, and İ. Şenol, “Optimization of rotor structure for providing minimum cogging moment by using open slot method in axial f lux permanent magnet motors”, Journal of Engineering and Natural Sciences Sigma 30, 392–401 (2012).
  • [7] M. Aydın, R.Q.R. Qu, and T. Lipo, “Cogging Torque Minimization Technique for Multiple Rotor, Axial Flux, Surface Mounted PM Motors: Alternating Magnet Pole–Arcs in Facing Rotors”, IEEE 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, pp. 555–561, 2003.
  • [8] M. Aydin, Z.Q. Zhu, T.A. Lipo, and D. Howe, “Minimization of Cogging Torque in Axial Flux Permanent Magnet Machines Design Concepts”, IEEE Transactions on Magnetics 43(9), 3614–3622 (2007).
  • [9] J.H. Choi, J.H. Kim, D.H. Kim, and Y.S. Baek, “Design and parametric analysis of axial flux pm motors with minimized cogging torque”, IEEE Transaction on magnetics 45(6), 2855–2858, (2009).
  • [10] C. Xia, L. Guo, Z. Zhang, T. Shi, and H. Wang, „Optimal Designing of Permanent Magnet Cavity to Reduce Iron Loss of Interior Permanent Magnet Machine”, IEEE Transactions on Magnetics 51(12), 8115409 (2015).
  • [11] M. Liu, Y. Pei, Z. Han, and P. Shi, “Optimization of Permanent Magnet Motor Air–gap Flux Density Based on the Non–uniform Air Gap”, IEEE International Conference on Mechatronic Sciences Electrical Engineering and Computer (MEC), pp. 3422–3426, 2013.
  • [12] S. Berhausen, and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator”, Bull. Pol. Ac.: Tech. 63(3), 575–582, (2015).
  • [13] E. Huner, M.C. Akuner, and U. Demir, “A New Approach in Application and Deesign of Toroidal Axial Flux Permanent Magnet Open Slotted NN Type (TAFPMOS–NN) Motor”, Technical Gazette 22(5), 1193–1198 (2015).
  • [14] M. Sadeghierad, H. Lesani, H. Mosef, and A. Darabi, “Air Gap Optimization of High–Speed Axial Flux PM Generator”, Journal of Applied Sciences 9(10), 1915–1921 (2009).
  • [15] S.N. Bansode, V.M. Phalle, and S. Mantha, “Taguchi approach for optimization of parameters that reduce dimensional variation in investment casting”, Archieves of Foundary Engineering of Polish Academy of Sciences 19(1), 5–12 (2019).
  • [16] G. Samtaş and S. Korucu, “Optimization of cutting parameters in pocket milling of tempered and cryogenically treated 5754 aluminum alloy”, Bull. Pol. Ac.: Tech. 67(4), 697–707 (2019).
  • [17] P. Raja, R. Malayalamurthi, and M. Sakthivel, “Experimental investigation of cryogenically treated HSS tool in turning on AISI1045 using fuzzy logic–Taguchi approach”, Bull. Pol. Ac.: Tech. 67(4), 687–696, (2019).
  • [18] U. Demir and M.C. Aküner, “Using Taguchi Method in Defining Critical Rotor Pole Data of LSPMSM Considering the Power Factor and Efficiency”, Technical Gazette, 24(2), 347–353 (2017).
  • [19] U. Demir and M.C. Aküner, “Design and Optimization of In–Wheel Asynchronous Motor for Electric Vehicle”, Journal of The Faculty of Engineering and Architecture of Gazi University”, 33(4), 1517–1530 (2018).
  • [20] Ü. Kurt and G. Önbilgin, “Design and Optimization of Axial Flux Permanent Magnet Synchronous Machines Using Taguchi Approach”, IEEE International Conference on Electrical and Electronics Engineering ELECO, Bursa, 2009.
  • [21] W.C. Tsai, “Robust Design of a 5MW Permanent Magnet Synchronous Generator Using Taguchi Method”, IEEE 7th International Conference on Computing and Convergence (ICCCT), pp. 1328–1334, 2012.
  • [22] Y. Özoğlu, “Genetic Algorithm and Fuzzy Based on The Taguchi Optimization to Improve The Torque Behavior of An Outer–Rotor Permanent Magnet Machine”, Gazi University Journal of Science, 82–98 (2018).
  • [23] A.N. Shirazi, B. Yousefi, S.S. Gholamian, and S. Rashidae, “Application of Taguchi Experiment Design for Decrease of Cogging Torque in Permanent Magnet Motors”, International Journal on Computational Sciences and Applications IJCSA 3(2), 31–38 (2013).
  • [24] A. Mahmoudi, H.W. Ping, and N.A. Rahim, “Comparison between the Torus anid AFIR Axial–Flux Permanent–Magnet Machine Using Finite Element Analysis”, 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 2011.
  • [25] J.C. Park, H.R. Choi, and G.H. Choe, “A Study on AFPM (Axial Flux Permanent Magnet) Motor without Stator Core”, Power Electronics Specialists Conference PESC'06, pp. 1–6, 2006.
  • [26] S. Kim, J.Y. Lee, Y.K. Kim, J.P. Hong, Y. Hur, and Y.H. Jung, “Optimization for Reduction of Torque Ripple in Interior Permanent Magnet Motor by Using the Taguchi Method”, IEEE Transactions on Magnetics 41(5), 1796–1799 (2005).
  • [27] L. Ai, G. Zhang, W. Li, G. Liu, and Q. Liu, “Optimization of radial type superconducting magnetic bearing using Taguchi method”, Physica C: Superconductivity and its applications 550, 57–64 (2018).
  • [28] C.C. Hwang, P.L. Li, F.C. Chuang, C.T. Liu, and K.H. Huang, “Optimization for reduction of torque ripple in an Axial Flux Permanent Magnet Machine”, IEEE Transaction on Magnetics, 45(3), 1760–1763 (2009).
  • [29] J. Si, S. Zhao, H. Feng, R. Cao, and Y. Hu, “Multi–Objective Optimization of Surface Mounted and Interior Permanent Magnet Synchronous Motor Based on Taguchi Method and Response Surface Method”, IEEE Chinese Journal of Electrical Engineering, 4(1), 67–73, (2018).
  • [30] Z.L. Gaing, Q.Q. Wang, and J.A. Chiang, “Optimization of In–wheel PM Motor by Fuzzy– based Taguchi Method”, IEEE International Power Electronics Conference, pp. 1312–1316, 2010.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f219e10-d3db-4f14-b37c-92091c8fcc74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.