PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydraulic resistance analyses of selected elements of the prototype Stirling engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of simulation tests of hydraulic resistance and temperature distribution of the prototype Stirling alpha engine supplied with waste heat. The following elements were analyzed: heater, regenerator and cooler. The engine uses compressed air as a working gas. Analyses were carried out for three working pressure values and different engine speeds. The work was carried out in order to optimize the configuration of the engine due to the minimization of hydraulic resistance, while maintaining the required thermal capacity of the device. Preliminary tests carried out on the real object allowed to determine boundary and initial conditions for simulation purposes. The simulation assumes that there is no heat exchange between the regenerator and the environment. The solid model used in simulation tests includes the following elements: supply channel, heater, regenerator, cooler, discharge channel. Due to the symmetrical structure of the analyzed elements, simulation tests were carried out using 1/6 of the volume of the system.
Rocznik
Strony
123--136
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, jkropiwn@pg.gda.pl
Bibliografia
  • [1] Walker G.: Stirling Engines. Oxford University Press, 1980.
  • [2] Żmudzki S.: Stirling Engines. WNT, Warszawa 1993 (in Polish).
  • [3] Finkelstein Th., Organ A.J.: Air Engines. ASME, New York 2001.
  • [4] Buoro D., et al.: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home. Energ. Convers. Manage. 60(2012), 96–105.
  • [5] Bernd Th.: Benchmark testing of Micro-CHP units. Appl. Therm. Eng. 28(2008), 2049–2054.
  • [6] Gianluca V., et al.: Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia 45(2014), 1235–1244.
  • [7] Li T., et al.: Development and test of a Stirling engine driven by waste gases for the micro-CHP system. Appl. Therm. Eng. 33-34(2012), 119–123.
  • [8] Remiorz L, et al.: Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump. Energy 148(2018), 134–147.
  • [9] Marion M., Hasna L., Gualous H.: Performances of a CHP Stirling system fuelled with glycerol. Renew. Energ. 86(2016), 182–191.
  • [10] Meybodi M., Behnia M.: Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system. Energy Policy 62(2013), 10–18.
  • [11] Lane N.W., Beale W.T.: A Biomass-fired 1 kWe Stirling engine generator and its applications in South Africa. In: Proc. 9th Int. Stirling Engine Conf., South Africa, June 2–4, 1999.
  • [12] Cheng C.H., et al.: Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy 59(2013), 590–599.
  • [13] Karabulut H., et al.: An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources. Appl. Energ. 86(2009), 68–73.
  • [14] Kongtragool B., Wongwises S.: Performance of low-temperature differential Stirling engines. Renew. Energ. 32(2007), 547–566.
  • [15] Sripakagorn A., Srikam C.: Design and performance of a moderate temperature difference Stirling engine. Renew. Energ. 36(2011), 1728–1733.
  • [16] Kropiwnicki J.: Design and applications of modern Stirling engines. Combust. Engines 3(2013), 243–249.
  • [17] Maier Ch., et al.: Stirling Engine. University of Gävle, Gävle 2007.
  • [18] Cieśliński J., Kropiwnicki J., Kneba Z.: Application of Stirling engines in micro-co-generation. In: District Heating, Heating, Renewable Energy Ssources (W. Zima, D. Taler), Wydaw. Politechniki Krakowskiej, Kraków 2013, 47–60 (in Polish).
  • [19] Cieśliński J., Kropiwnicki J., Kneba Z., Woronkin S., Witanowski Ł., Zalewski K.: Investigation of a Stirling engine as a micro-CHP system. In: Proc. 3rd Int. Conf. Low Temperature and Waste Heat Use in Energy Supply Systems Theory and Practice, Bremen 2012, 33–38.
  • [20] Gheith R., Aloui F., Ben Nasrallah S.: Experimental investigation of a Gamma Stirling engine. Int. J. Energy Res. 37(2013), 1519–1528.
  • [21] Tavakolpour-Saleh A.R., et al.: A novel active free piston Stirling engine: Modeling, development, and experiment. Appl. Energ. 19(2017), 9, 400–415.
  • [22] Kwankaomeng S., et al.: Investigation on stability and performance of a freepiston Stirling engine. Energy Procedia 52(2014), 598–609.
  • [23] Kropiwnicki J., Furmanek M.: The use of Stirling engine for energy recovery from flue gas. Autobusy, Technika, Eksploatacja, Systemy Transportowe 9(2018), 89—92 (in Polish).
  • [24] Kropiwnicki J.: Stirling engines powered by renewable energy sources. In: Proc. 22nd Int. Symp. Research-Education-Technology, Bremen 2015, 231–237.
  • [25] Pudlik W.: Heat Transfer and Heat Exchangers. Wydawn. Politechniki Gdańskiej, Gdańsk 2012 (in Polish).
  • [26] Madejski J.: Theory of Heat Transfer. Wydawn. Politechniki Szczecińskiej, Szczecin 1998 (in Polish).
  • [27] Tanaka M., Yamashita C.F.: Flow and the heat transfer characteristics of Stirling engine in an oscillating flow. JSME Int. J. 33(1990), 2, 283–289.
  • [28] Uchman W., Remiorz L., Kotowicz J.: Economic effectiveness evaluation of the free piston Stirling engine-based micro-combined heat and power unit in relation to classical systems. Arch. Thermodyn. 40(2019), 1, 71–83.
  • [29] Ranjan R.K., Verma S.K.: Thermodynamic analysis and analytical simulation of the Rallis modified Stirling cycle. Arch. Thermodyn. 40(2019), 2, 35–67.
  • [30] Autodesk Inventor Tutorial, https://www.instructables.com/id/Autodesk-InventorTutorial/ (accessed: June 30th 2019).
  • [31] Ansys Fluent Users Guide, https://www.ansys.com/products/fluids/ansys-fluent (accessed: June 30th 2019).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f182176-981e-4fae-acec-866647c72a26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.