PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of porosity on the structure, mechanical properties and cell viability of new bioceramics as potential bone graft substitutes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous and alternative biografts for possible usages in orthopaedic applications were synthesized by the substitution of gelatin (G), cuttlefish backbone (C), meerschaum sepiolite (S) and hydroxyapatite (H). The effects of different proportions of the Gelatin substitutions on the mechanical properties and structure and cell viability properties of the fabricated biografts were investigated. Throughout the structure and mechanical evaluations, it was found that Gelatin substitution in the fabricated biografts increased the total porosity fraction, particularly for C13G75 and S13G75 biografts. Scanning Electron Microscope (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used for characterization of the synthesized biografts. Furthermore, the cell viability tests for the synthesized biografts were carried out by using the osteoblast cell culture. Throughout the analysis, the synthesized C13G75 and S13G75 biografts generated the highest porosity and better correlation between mechanical properties and structural results contributing with highest cell viability rates.
Rocznik
Strony
11--22
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Adiyaman University, Vocational School of Technical Sci, Adiyaman, Turkey
autor
  • man University, Vocational School of Technical Sci, Adiyaman, Turkey. 2 Yildiz Technical University, Faculty of Chemical and Metallurgy, Department of Metallurgy and Mater Engineering, Istanbul, Turkey
Bibliografia
  • [1] RODAN G.A., Principles of Bone Biology, 2nd ed., San Diego, Academic Press 2002.
  • [2] ZYSSET P.K., GUO X.E., HOFFLER C.E., MOORE K.E., GOLDSTEIN S.A., Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J Biomech., 1999, 32, 10, 1005.
  • [3] KEAVENY T.M., MORGAN E.F., NIEBUR G.L., YEH O.C., Biomechanics of Trabecular Bone, Annu. Rev. Biomed. Eng., 2001, 3, 307.
  • [4] GREEN D., WALSH D., MANN S., OREFFO R.O.C., The Potential of Biomimesis in Bone Tissue Engineering: Lessons from The Design and Synthesis of Invertebrate Skeletons, Bone, 2002, 50, 253.
  • [5] LOWENSTAM H.A., WEINER S., On Biomineralization, Oxford Univ. Press, 1989.
  • [6] ROCHA J.H.G., LEMOS A.F., AGATHOPOULOS S., VALERIO P., KANNAN S., OKTAR F.N., FERREIRA J.M.F., Scaffolds for Bone Restoration from Cuttlefish, Bone, 2005, 37, 850.
  • [7] BALAZSI C., WEBER F., KÖVER Z., HORVATH E., NEMETH C., Preparation of Calcium – Phosphate Bioceramics From Natural Resources, J. Eur. Ceram. Soc., 2007, 27, 1601.
  • [8] ROCHA J.H.G., LEMOS A.F., AGATHOPOULOS S., KANNAN S., VALERIO P., FERREIRA J.M.F., Hydrothermal Growth of Hydroxyapatite Scaffolds from Aragonitic Cuttlefish Bones, Wiley Interscience, 2005.
  • [9] KANNAN S., ROCHA J.H.G., AGATHOPOULOS S., FERREIRA J.M.F., Fluorine-Substituted Hydroxyapatite Scaffolds Hydrothermally Grown from Aragonitic Cuttlefish Bones, Acta Biomaterialia, 2007, 3, 243.
  • [10] AKSAKAL B., DEMIREL M., Synthesis and fabrication of novel cuttlefish (sepia officinalis) backbone biografts for biomedical applications, Ceramics Int., 2015, 41(3), 4531.
  • [11] DEMIREL M., AKSAKAL B., Synthesis of novel meerschaum (sepiolite) derived bioceramics versus hydroxyapatite based bone grafts, Ceramics Int., 2015, 41, 9251.
  • [12] HENCH L.L., Sol-Gel Materials for Bioceramic Applications, Curr. Opin. Solid State Mater. Sci., 1997, 2, 604.
  • [13] JENKINS M., BOCA RATORN F.L., Biomedical Polymers, CRC Press, 2007.
  • [14] KARAGEORGIOU V., KAPLAN D., Review: Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, 5474.
  • [15] LIU X., MA P.X., Phase Seperation, Pore Structure, and Properties of Nanofibrous Gelatin Scaffolds, Biomaterials, 2009, 30, 4094.
  • [16] LIU X., SMITH L.A., HU J., MA P.X., Biomimetric Nanofibrous Gelatin/Apatite Composite Scaffolds For Bone Tissue Engineering, Biomaterials, 2009, 30, 2252.
  • [17] ZHANG Y.F., CHENG X.R., CHEN Y., SHI B., CHEN X.H., XU D.X., KE J., Three-Dimensional Nanohydroxiapatite/Chitosan Scaffolds As Potential Tissue Engineered Periodontal Tissue, J. Biomater. Appl., 2007, 21, 333.
  • [18] ZHAO F., GRAYSON W.L., MA T., BUNNELL B., LU W.W., Effects of Hydroxiapatite in 3D Chitosan-Gelatin Polymer Network on Human Mesenchymal Stem Cell Construct Development, Biomaterials, 2006, 27, 1859.
  • [19] MANJUBALA I., SCHELER S., BOSSERT J., JANDT K.D., Mineralisation of Chitosan Scaffolds With Nano-Apatite Formation By Double Diffusion Technique, Acta Biomater., 2006, 2, 75.
  • [20] TAKAHASHI Y., YAMAMOTO M., TABATA Y., Osteogenic Differentation of Mesenchymal Stem Cell in Biodegradable Sponges Composed of Gelatin and β-Tricalcium Phosphate, Biomaterials, 2005, 26, 3587.
  • [21] XU H.H., SIMON C.G., Fast Setting CalciumPhosphateChitosan Scaffold: Mechanical Properties and Biocompatibility, Biomaterials, 2005, 26, 1337.
  • [22] OLAH L., BORBAS L., Properties of calcium carbonate – containing composite scaffolds, Acta Bioeng Biomech., 2008, 10(1), 61–66.
  • [23] TRYBUŚ B., ZIELIŃSKI A., BEUTNER R., SERAMAK T., SCHARNWEBER D., Deposition of phosphate coatings on titanium within scaffold structure, Acta Bioeng. Biomech., 2017, 19(2), 65–72.
  • [24] LIU X. et al., Surface nano-functionalization of biomaterials, Materials Science and Engineering, 2010, R 70, 275.
  • [25] NAKONIECZNY D., PASZENDA Z., DREWNIAK S., RADKO T., LIS M., ZrO2-CeO2 ceramic powders obtained from a sol-gel processusing acetylacetone as a chelating agent for potential application in prosthetic dentistry, Acta of Bioeng. and Biomech., 2016, 18(3), 53–60.
  • [26] NAKONIECZNY D.S., PASZENDA Z.K., BASIAGA M., RADKO T., DREWNIAK S., PODWÓRNY J., BOGACZ W., Phase composition and morphology characteristics of ceria-stabilized zirconia powders obtained via sol-gel method with various pH conditions, Acta of Bioeng. and Biomech., 2017, 19(2), 21–30.
  • [27] JANUS et al., Plasma assisted chemical vapour deposition – technological design of functional coatings, Archives of Metallurgy and Materials, 2915, 60, 909.
  • [28] AKSAKAL B., SAY Y., BUYUKPINAR Ç., BAKIRDERE S., Biodegradation of hydroxyapatite coated Rex-734 alloy with silver and selenium/chitosan substitutions: In vitro analysis, Ceramics International, 2017, 43, 12609–615.
  • [29] WORD A.G., COURTS A., The Science and Technology of Gelatin, Academic Press. London 1977.
  • [30] NARASARAJU T.S.B., PHEBE D.E., Some Physico-Chemical Aspects of Hydroxyapatite, J. Mater. Sci., 1996, 31, 1.
  • [31] LEE S.H., SHIN H., Matrices and Scaffolds for Delivery of Bioactive Molecules in Bone and Cartilage Tissue Engineering, Adv. Drug. Delivery Rev., 2007, 59, 339.
  • [32] EVIS Z., WEBSTER T.J., Nanosize hydroxyapatite: doping with various ions, Adv. Appl. Cer: Struct. Funct. Biocer., 2011, 110, 311.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f17e8fe-d310-4eeb-a7fe-d3fd8d1983b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.