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Abstract In this paper, we put forward a new topological taxonomy that allows us to
distinguish and separate multiple solutions to ill-conditioned parametric inverse
problems appearing in engineering, geophysics, medicine, etc. This taxonomy
distinguishes the areas of insensitivity to parameters called the landforms of
the misfit landscape, be it around minima (lowlands), maxima (uplands), or
stationary points (shelves). We have proven their important separability and
completeness conditions. In particular, lowlands, uplands, and shelves are pai-
rwise disjoint, and there are no other subsets of the positive measure in the
admissible domain on which the misfit function takes a constant value. The
topological taxonomy is related to the second, “local” one, which characteri-
zes the types of ill-conditioning of the particular solutions. We hope that the
proposed results will be helpful for a better and more precise formulation of
ill-conditioned inverse problems and for selecting and profiling complex optimi-
zation strategies used in solving these problems.
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1. Introduction

Formulating and solving Global Optimization Problems (GOPs) is one of the fun-
damental ways for modeling, planning, and optimizing important human activities.
Roughly speaking, we first identify the decision variables that affect a given process,
then define a numerical criterion that describes the process; e.g., as objective function
f of the real-valued decision variables, in such a way that the better the controlled
process is evaluated, the smaller the value of f is. Finally, we seek variable values
that minimize this function. Unfortunately, in many real-world settings, the natural
objective function has large regions (surrounding the global solutions) where they
lose sensitivity to the parameters. Such GOPs belong to the group of ill-conditioned
problems.

If admissible set of decision variables D is equipped with a metric and a vector
structure (e.g., D is a regular domain in R`), the regions of insensitivity can be studied
by topological methods. Such methods may also be applicable if D is discrete with
a topology imposed by the inner graph structure. In both cases, finding the regions
of insensitivity surrounding the global objective minimizers seems to be the primary
task when solving ill-conditioned GOPs. If there are multiple non-intersecting regi-
ons of low sensitivity surrounding different global minimizers, the problem becomes
multimodal.

Traditional approaches to handling multimodality and insensitivity in GOP sol-
ving rely on regularization methods [24]. These methods proceed by supplementing
the objective function with a regularization term, making it globally convex. Unfor-
tunately, such methods may lead to many undesirable artifacts as well as to the loss
of information regarding the modeled process. Indeed, it can even lead to outright
false solutions, forced by the regularization supplement.

A different and perhaps more reliable approach to handling multimodality and in-
sensitivity is based on finding approximations of the insensitivity regions that contain
the global objective minimizers.

The effective handling of the insensitivity and multimodality of the objective
functions is particularly essential for solving various tasks in technology formulated
as inverse parametric problems (IPPs) (e.g., regarding lens design [12]), in geophysics
(e.g., in the calibration of conceptual Rainfall-Runoff Models [10], or for investiga-
ting oil and gas resources [22]) as well as in medical diagnoses (e.g., in tumor tissue
identification [18]).

The important introductory step to such an analysis needs a precise definition
of the set of solutions adequate to the particular problem and the taxonomy of other
important sets contained in the admissible domain affecting the problem difficulty,
as the sets and basins of attractions and diverse kinds of “plateaus” can trap the
searching process.

Various definitions of such sets might be found in the book of Mike Preuss [19] and
Bernadette Addis’s PhD Thesis [1] as well as in earlier papers by Aimo Törn [26,27],
Dixon and Szegö [8, 9], and Boender, RinnoyKan, Stougie, Timmer [5].
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Unfortunately, the taxonomies found in the literature do not fit all of the natural
needs formulated in the analysis of ill-posed inverse problems. In particular, there is
no precise definition of the sets of solutions of the positive Lebesgue measure (plateaus,
lowlands) nor a proper definition of their sets of attractions and basins of attractions.
In particular, the current definitions of basins of attraction do not guarantee the
separation of the sets composed of local and global minima.

The main contribution of this paper is an exhaustive topological taxonomy of the
sets mentioned above, handled as the “landforms” in the global optimization lands-
cape; i.e., the subsets of the admissible domain playing the special role in the objective
function’s chart. The landforms of our particular interest are lowlands, uplands, shel-
ves, and their sets and basins of attraction. It was proven that lowlands and their
basins of attractions are pairwise disjoint, which allows for precise defining and finding
separate sets of solutions to multimodal ill-conditioned problems by stochastic met-
hods. Moreover, the uplands and shelves with their sets of attraction that constitute
potential traps for searching algorithms are separated.

Moreover, it was possible to analyze the completeness of the introduced topolo-
gical taxonomy. We have proven lowlands, uplands and shelves to be the only subsets
of a positive measure of the admissible domain on which objective takes a constant
value.

The topological taxonomy is related to the so-called “local” taxonomy of solutions
to ill-posed inverse parametric problems formulated as global optimization ones. This
taxonomy tries to characterize the types of ill-conditioning of a particular solution or
a set of solutions.

We suggest to avoid the term “plateau”, as it is less concrete than the proposed
terms of lowland, upland, and shelf. Even though the term is used in the literature
(see [16,17,19]), it introduces some ambiguity.

We hope that the proposed taxonomies and definitions will be helpful for a precise
formulation of the ill-posed problems appearing in engineering. Moreover, the taxo-
nomies might be helpful for selecting and profiling complex optimization strategies
used to solve these problems.

2. Taxonomy of ill-conditioned inverse problems – the local
approach

Following [15], we present a simple taxonomy of ill-posed IPPs. For introducing
abstract mathematical definitions, we consider a sample forward problem represented
by the elliptic variational equation:

Given ω ∈ P, find u ∈ U ; b(ω;u, v) = l(v) ∀v ∈ U, (1)

where U is a Hilbert solution space (space of states of the system), which typically is
infinite-dimensional, P is a Banach space of the problem’s parameters, b : P×U×U →
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R is a bilinear continuous form with respect to the second and third variables, and
l : U → R is a continuous linear functional.

If form b is uniformly coercive (i.e., b(ω;u, u) > c0‖u‖2U ∀u ∈ U , where constant
c0 > 0 does not depend on ω ∈ P), then (1) is well-posed in the sense of Hada-
mard, uniformly with respect to the parameters. The forward solution frequently
continuously depends on the parameter, so we can establish a continuous mapping:

A1 : P 3 ω → u ∈ U ; ω, u satisfy (1). (2)

Typically, the forward solution (state) is not totally observable, and the state
measurements being the input of the IPP belong to O— a finite dimensional subspace
of U . Therefore, that we can establish the linear continuous projection:

A2 : U 3 u→ u ∈ O. (3)

An abstract IPP, a problem inverse to (1), consists in finding the following:

ω ∈ D ⊂ P; A(ω) = u0, (4)

where u0 ∈ O is the given state (forward solution) observation and A = A2 ◦ A1 :

P → O is assumed to be continuous in the appropriate topologies. Moreover, D ⊂ P
stands for the nonempty set of admissible parameters restricted by some particular
constraints. We also assume that D has a positive measure in space P.

Problem (4) is well posed in the sense of Hadamard if it possesses a unique
stable solution that is always satisfied if A is one-to-one and A−1 is continuous (see,
e.g., [4, 13]). It is possible to consider a wider class of IPPs conditionally well-posed
in the sense of Tikhonow for which there exists a set of well posedness M ⊂ D ⊂ P
so that u0 ∈ A(M) and:
1. A(ω) = u has a unique solution for all u ∈ A(M),

2. A−1 is continuous on A(M).
(see Definitions 4.3 and 4.4 in [13]). This is the broadest class of IPPs feasible to be
solved by regularization, which iteratively “smoothes” operator A−1 to finally reach
its global continuity (see, e.g., [25]).

Definition 1. (see [15], Definition 1) An inverse parametric problem that is not
conditionally well-posed in the sense of Tikhonov and cannot be successfully solved by
regularization will be called irremediable.

Most frequently, IPPs appearing in real-world engineering applications are irre-
mediable ill-posed because of at least two reasons:
(i) An ambiguous mathematical model (which allows multiple solutions; see,

e.g., [6]) such that A1 is not an injection. Moreover, the exact value of A1(ω)

may not be explicitly reachable — it can only be approximated by numerical
simulation (as in the case of (1)).
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(ii) Measurements u ∈ O do not deliver the complete information necessary to re-
construct forward solution u ∈ U with sufficient accuracy. Moreover, A2 is
rarely an injection, as it is a projection of an infinitely-dimensional space U on
a finitely-dimensional space O.

Summing up, A is rarely an injection and IPPs may allow multiple solutions, even
forming infinite dense subsets contained in A−1(u0) ⊂ D.

In the remaining part of this section, we will introduce a taxonomy of irremediable
ill-posed IPPs based on their formulation as a GOP that is not as general as (4),
suggesting a particular way of finding its solution:

arg minω∈D⊂P{f(u0, uω); A1(ω) = uω}, (5)

where f : O×U → R+∪{0} stands for a misfit functional evaluating the gap between
an observation and a simulated forward solution.

The transition from abstract formulation (4) to the above (5) is not unique and
depends on the misfit setting. Moreover, the misfit selection strongly affects the
conditioning of the inverse problem. The simplest setting might be f(u0, u) = ‖u0 −
A2(u)‖2O or f(u0, u) = ‖u0 − u‖2U if O ⊂ U .

Let us denote by S ⊂ D ⊂ P a set of solutions to problem (5) for given observation
u0 ∈ O and assume that it is nonempty (S 6= ∅); then:
C1. Problem (5) is unimodal if card(S) = 1.

C2. Problem (5) is multimodal if card(S) > 1.

C3. Solution ω ∈ S is sensitive and stable on open connected set B ⊂ D with positive
Lebesgue measure meas(B) > 0 if ω ∈ B and

∀x ∈ B, x 6= ω c0 ≤
|f(u0, uω)− f(u0, ux)|

‖ω − x‖P
≤ c1,

for some reasonable real constants c0, c1 ∈ R; 0 < c0 < c1 < +∞.

C4. Solution ω ∈ S is g-unstable on open connected set B ⊂ D meas(B) > 0 if ω ∈ B
and

∃n ∈ P; ‖n‖P = 1; ∀α 6= 0, x = ω + αn ∈ B, g ≤ |f(u0, uω)− f(u0, ux)|
‖ω − x‖P

for some sufficiently large constant g > 0.

C5. Solution ω ∈ S is γn-insensitive on open connected set B ⊂ D meas(B) > 0 if
ω ∈ B and

∃n ∈ P; ‖n‖P = 1; ∀α 6= 0, x = ω + αn ∈ B, |f(u0, uω)− f(u0, ux)|
‖ω − x‖P

≤ γ,

for some sufficiently small constant γ > 0.
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C6. Solution ω ∈ S is γ-insensitive on open-connected set B ⊂ D meas(B) > 0 if
ω ∈ B and w is γn-insensitive on set B, ∀n ∈ P; ‖n‖P = 1.

C7. Set of solutions A ⊆ S to problem (5) is γ-insensitive if there exist disjoint
connected sets B1, . . . , Bp ⊂ D, p ≥ 1 such that meas(Bi) > 0, i = 1, . . . , p and
∀ω ∈ A ∃i ∈ {1, . . . , p} so that ω is γ-insensitive on set Bi.

C8. Problem (5) is γ-unspecified if there exists a set A ⊆ S of γ-insensitive solutions
so that meas(A) > 0.

C9. Problem (5) is γ-unspecified, multimodal if it is γ-unspecified and p > 1.

Remark 2.

(a) Conditions C1, C2, and C3 correspond in some way to the conditional well-
posedness in the sense of Tikhonow, but it depends strongly on the particular
misfit setting.

(b) The above taxonomy is computationally-oriented, so the values of constants
g, c0, c1, and γ may depend on the accuracy of the algorithm applied for solving
(5) and the available arithmetic accuracy.

(c) The conditioning of problem (5) might be additionally worsened by the errors of an
approximate solution of forward problem (1) and the global optimization strategies
of finding all misfit minimizers.

(d) The g-unstable solutions satisfying C4 (e.g. needle minimizers) are most likely
artifacts and can be ignored.

3. Topological taxonomy of GOP’s landforms

3.1. Global optimization problems in continuous domains

For many important IPPs, we use the approximate version of (5) in which the ad-
missible set of parameters ω ∈ Σ will be represented by the closed, bounded, and
connected domain D ⊂ R`, 1 ≤ ` < +∞ with a nonempty interior and sufficiently
regular boundary (e.g., Lipschitz boundary [29]). The dependency on observation u0
will be further omitted for the sake of simplicity. Assuming observation u0 ∈ O, the
misfit will be represented by continuous function f ∈ C(R` → R).

It is obvious that f attains its minimum and maximum values over D; i.e.,

∃xmin, xmax ∈ D; ∀x ∈ D −∞ < f(xmin) ≤ f(x) ≤ f(xmax) < +∞. (6)

Of course, we can have many global minimizers and maximizers. Moreover,
neither of the f(xmin) and f(xmax) values are necessarily known a priori. In some
IPPs, f(xmin) = 0, which represents the perfect parameters’ fit. It other cases,
f(xmin) > 0 because of the irreducible errors of the mathematical model of the real-
world problem as well as imperfection of the applied approximation.
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Following (5), we intend to solve the GOP:

arg minx∈D{f(x)}, D ⊂ R`, f : D → R, (7)

The goal of next sections is to establish a taxonomy of solution sets for (7) that
corresponds to the local taxonomy of the IPP’s ill-conditioning. Such a taxonomy will
be convenient for studying the features of complex solving strategies (e.g., memetic
strategies [7]) that combine a global stochastic search with various algorithms that
improve the search results locally. The latter can be both stochastic or deterministic
and can either speed up finding isolated local minimizers or approximate the shapes
of areas on which the objective attains a locally minimal constant value.

3.2. Minimum manifolds and lowlands

Definition 3.
1. Each y ∈ D will be called the local minimizer to f in D if

∃By ⊂ D; y ∈ By, By is connected, f(y) = f(ξ) ∀ξ ∈ By and

∃A ∈ top(R`); By ⊂ A, f(y) < f(ξ) ∀ξ ∈ (A ∩ D) \By.
(8)

2. Each local minimizer y to f in D will be called a global minimizer if f(y) =

f(xmin).

3. Set By will be called the minimum manifold to f in D. We will denote by
MManifoldsf,D the family of all minimum manifolds to f in D.

4. Each minimizer y ∈ D to f in D will be called isolated if By = {y}.
Lemma 4. Disjoint open sets U and V are separated – U ∩ V = U ∩ V = ∅ (The
upper bar over the set symbol denotes its topological closure; i.e., V is the closure of
V ).

Proof. Suppose x ∈ U ∩ V . By definition of closure U ∩ V 6= ∅, which makes the
contradiction. The second case follows by symmetry.

Theorem 5. Let y be a local minimizer of f in D, f(y) = a. Then, By is a connected
component of (f |D)−1(a) that contains y.

Proof. Let Da = (f |D)−1(a), then Da = f−1(a) ∩D. Since f is continuous, f−1(a) is
closed. Therefore, Da is closed as an intersection of two closed sets. Let Cy denote
the connected component of Da containing y. Since the connected components of Da

are closed in Da and Da is itself closed in Rn, then Cy is closed as well. Our goal is
to prove that By = Cy.

By definition of By and by the continuity of f , we have By ⊂ Da. Moreover, By
is connected because By is connected.

This together with y ∈ By implies By ⊂ Cy. It is enough to show that Cy ⊂ A,
since if ξ ∈ Cy\By, we have ξ ∈ (A∩D)\By and so f(ξ) > a, which contradicts ξ ∈ Cy.
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Since By ⊂ A, sets By and Rn \ A are disjoint and closed. Rn as a metric space is
normal, so they have disjoint open neighborhoods; i.e., there are open sets U ⊃ By,
V ⊃ Rn \ A with U ∩ V = ∅. By Lemma 4, U ∩ V = U ∩ V = ∅, so the same
is true for S = U ∩ Cy, T = V ∩ Cy. Furthermore, S ∪ T = Cy, for Cy ⊂ D and
if ξ ∈ D \ (S ∪ T ), then ξ ∈ D \ (U ∪ V ) ⊂ D \ (By ∪ Rn \ A) = (A ∩ D) \ By, and
so f(ξ) > a, thus ξ 6∈ Cy.

Recall that, by the definition of connectedness, either S = ∅ or T = ∅. Since y ∈
By ⊂ Cy ∩ U = S, we have T = ∅; so, Cy \ A = Cy ∩ (Rn \ A) ⊂ Cy ∩ V = T = ∅
and Cy ⊂ A.

Observation 6.

1. ∀y′ ∈ By By′ = By.

2. By = By.

Proof. The first part follows immediately from the above theorem and the definition
of the connected component. The second assertion follows from the above proof –
using the notation from the proof, By = Cy, and Cy is shown to be closed.

Remark 7. Note that the above definition of the local minimizer is strictly stronger
than the classical definition of a (weak) local minimum. In some cases, points that we
would intuitively like to consider as minimizers fail to meet the requirements of the
definition. Consider D = [−1, 1] and f : D → R given by

f(x) =

{
0 for x = 0

x2 sin2
(
1
x

)
for x 6= 0

(9)

It is a continuous function with minimal value 0 assumed at M = {1/kπ : k ∈ Z, k 6=
0} ∪ {0}, but x = 0 is not a local minimizer. Indeed, if it were, then B0 = {0} by
Theorem 5; however, since x = 0 is a limit point of M , no neighborhood A of 0 can
satisfy the condition that f(ξ) > 0 for ξ ∈ A \ {0}.

This can be seen as a limitation of the proposed definition. Note, however, that
the nature of the above example makes it unlikely for any numerical method to handle
in a satisfactory manner.

Theorem 5 tells us that minimum manifolds are connected components of level
sets of f . The example from Remark 7 shows that the converse in general is false;
i.e., the connected components of (even globally) minimal level sets of f need not be
minimum manifolds. The following theorem may be seen as a partial converse:

Theorem 8. Let f satisfy the additional condition: for each a ∈ R, the connected
components of (f |D)−1(a) form a locally finite family. Then, the following is true:
let y ∈ D, f(y) = a and let Cy be a connected component of (f |D)−1(a) containing y.
If there exists an open set A such that Cy ⊂ A and f(ξ) ≥ a for each ξ ∈ A ∩ D,
then y is a local minimizer of f .



Ea
rly

bir
d

Misfit landforms imposed by ill-conditioned inverse parametric problems 165

Proof. By the assumption, the family of connected components of (f |D)−1(a) is locally
finite. For each x ∈ Cy, let us choose open neighborhood Ux of x that intersects finitely
many such components C1, . . . , Ck apart from Cy. We can assume Ux ⊂ A (otherwise,
we can pick Ux ∩ A). Then, Ũx = Ux \ (C1∪, . . . ,∪Ck) is open, since Ci are closed,
and x ∈ Ũx, since the connected components are disjoint. Let

U =
⋃
x∈Cy

Ũx.

Then U is an open neighborhood of Cy contained in A that does not intersect any
connected components of (f |D)−1(a) except Cy.

Let ξ ∈ (U ∩D) \Cy. By assumptions, f(ξ) ≥ a. However, if f(ξ) = a, then ξ ∈
f−1(a); so, ξ ∈ Cy, since U does not intersect any other component of (f |D)−1(a).
Thus, f(ξ) > a = f(y); so, y is a local minimizer.

Let us consider the local minimizer z contained in some minimal manifold By
satisfying Definition 3.
Definition 9. Lowland Pz to f in D associated with local minimizer z ∈ By is the
maximum open-connected set (in the sense of inclusion) so that Pz ⊂ By and z ∈ Pz
or the empty set. Let us denote by Lowlandsf,D the family of all lowlands to f in D.

Remark 10.

1. Definition 9 is well-posed; i.e., for each z ∈ By, set Pz is unambiguously defined
(if it exists).

2. ∀z′ ∈ Pz f(z′) = f(z) = f(y),

3. ∀z′ ∈ Pz Pz = Pz′ .
There is no simple relationship between the number of minimum manifolds and

the number of lowlands (see Figure 1).

x

y w

zu

Figure 1. Minimum manifold Bx contains only one lowland (Py), while minimum manifold
Bu contains two lowlands (Pw and Pz).

Observation 11. If f is a differentiable function, then it is well-known that, for
every minimum manifold By and every x ∈ By, we have

∇f(x) = 0.
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If, moreover, f is twice differentiable, then Hessian matrix Hf(x) is positive semi-
definite.

3.3. Maximum manifolds and uplands

Definition 12.
1. Each y ∈ D will be called the local maximizer to f in D if

∃Gy ⊂ D; y ∈ Gy, Gy is connected, f(y) = f(ξ) ∀ξ ∈ Gy and

∃A ∈ top(R`); Gy ⊂ A, f(y) > f(ξ) ∀ξ ∈ (A ∩ D) \Gy.
(10)

2. Each local maximizer y to f in D will be called a global maximizer if f(y) =

f(xmax).

3. Set Gy will be called the maximum manifold to f in D. The family of all maximum
manifolds to f and D will be denoted by MaxManifoldsf,D.

4. Each maximizer y ∈ D to f in D will be called isolated if Gy = {y}.
Maximal manifolds share a lot of properties of minimal manifolds due to the

symmetry of both definitions.

Theorem 13.
(a) Let y be a local maximizer of f in D, f(y) = a. Then, By is a connected component

of (f |D)−1(a) that contains y.
(b) Assume the connected components of (f |D)−1(a) form a locally finite family for

each a ∈ R. Let y ∈ D, f(y) = a and let Cy be a connected component
of (f |D)−1(a) containing y. If there exists an open set A ⊃ Cy with f(ξ) ≤ a

for each ξ ∈ A ∩ D, then y is a local maximizer of f .

Proof. This is the same as the proofs of Theorem 5 and 8 with flipped inequalities
between f(ξ) and f(y) (since such inequalities are only used to conclude that ξ 6∈
Cy).

Let us consider local maximizer z that belongs to some maximum manifold Gy.

Definition 14. Upland Uz to f in D, associated with local maximizer z ∈ Gy is the
maximum open-connected set (in the sense of inclusion) so that Uz ⊂ Gy and z ∈ Uz
or the empty set. Let us denote by Uplandsf,D the family of all uplands to f in D.

Observation 15. If f is a differentiable function, then (as in the case of minimum
manifolds), for every maximum manifold By and for every x ∈ By we have

∇f(x) = 0.

If, moreover, f is twice differentiable, then Hessian matrix Hf(x) is negative semi-
definite.
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3.4. Stationary manifolds and shelves

Let x ∈ D and c ∈ [f(xmin), f(xmax)] so that f(x) = c.
Definition 16. Hx ⊂ D will be called the stationary manifold associated with x ∈
D if it is the maximum connected set (in the sense of inclusion) satisfying Hx ⊂
(f |D)−1(c), x ∈ Hx and Hx \ {x} 6= ∅.
Definition 17. Sx ⊂ D will be called the shelf to f in D associated with x ∈ D if
it is the maximum open-connected set (in the sense of inclusion) satisfying Sx ⊂ Hx,
x ∈ Sx, and Sx /∈

(
Lowlandsf,D ∪ Uplandsf,D

)
. Let us denote by Shelvesf,D the

family of all shelves to f in D.
Observation 18. It is easy to show that, if f is differentiable, then for every shelf
Sy and every x ∈ Sy, we have

∇f(x) = 0.

The observation above is generally not true for an arbitrary stationary manifold. If,
however, a stationary manifold that is neither a minimum nor maximum manifold
contains a point with a vanishing gradient (i.e., a critical point), then the Hessian
matrix at this point can have both positive and negative eigenvalues, which means that
it is a saddle point for f .
Remark 19. Observations 11, 15, and 18 state that minimum manifolds, maximum
manifolds, and shelves are composed of critical points for f .
Observation 20. Stationary manifolds are disjoint since they are connected compo-
nents of the sets of form (f |D)−1(c)

Observation 21. In particular, minimum and maximum manifolds are disjoint.

3.5. Steepest- and strictly-descent local optimization methods

Definition 22. Local optimization method loc will be called steepest-descent if it
generates sequence {xi}i=0,1,2,... ⊂ D so that

xi+1 = xi + ξini; i = 0, 1, 2, . . . , (11)

where x0 is the starting point, ni ∈ R`, ‖ni‖ = 1 the unit direction vector of the
maximum slope of function f at xi, and ξi ≥ 0 is the i-th step length.Unit vector
ni does not exist if, for all y ∈ A, f(y) ≥ f(xi), where A ∈ top(D) is open set
A ∈ top(D) containing xi. In this case, ξi = 0, and the method is stopped. We will
denote by loc(x0) the limit of approximate sequence {xi}i=0,1,2,....
Remark 23. The above definition implies that, if a steepest-descent method is started
from x0 such that neighborhood A of x0 exists such that

f(y) ≥ f(x0) for all y ∈ A, (12)

then the method stops immediately. Alternatively, we can say that it generates a
constant minimizing sequence. Anyway, in such a case, we have that

loc(x0) = x0.
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Note that condition (12) holds for the local minimizers but also for any element of a
lowland, shelf, or upland.

If f ∈ C1(D), then we can set ni = −‖∇f(xi)‖−1 ∇f(xi). The gradient operator
might be replaced by the Gâteaux derivative if function f is only differentiable in the
Gâteaux sense. In the case of continuous functions f ∈ C0(D) that are not Gâteaux
differentiable, the selection of the maximum slope unit vector would be difficult or
even impossible. For such cases, we suggest the class of local methods that are
approximately steepest-decent.
Definition 24. Local method loc will be called α-steepest-descent if it generates the
minimizing sequence of form (11) and the unit direction vector of the maximum slope
of function f at xi will be set as

ni = α−1(w − xi); w ∈ Oα,xi = {y ∈ D; ‖y − xi‖ = α} where

f(xi)− f(w) = maxy∈Oα,xi {f(xi)− f(y)} and

∀β, γ; 0 ≤ β < γ ≤ 1 f(xi + β(w − xi)) > f(xi + γ(w − xi)).

(13)

If such a ni does not exist, then the method is stopped. Real constant α > 0 is the
parameter of this definition.
Remark 25. The unit direction vector of maximum slope ni of function f at xi given
by formula (13) is well-defined because continuous function f(xi) − f(·) reaches its
maximum on compact Oα,xi .

We will distinguish a special subclass of steepest-descent local optimization met-
hods (see Rinnooy, Kan, Timmer [20], Dixon Gomulka Szegö [8]).
Definition 26. Steepest-descent (α-steepest-descent) local optimization method loc

will be called strictly-steepest-descent (α-strictly-steepest-descent) on D if, for each
starting point x0 ∈ D, it generates minimizing sequence {xi}i=0,1,2,... ⊂ D according
to rule (11) so that

∀i = 0, 1, 2 . . . ∀β, γ; 0 ≤ β < γ ≤ ξi ⇒ f(xi + γni) < f(xi + βni). (14)

We will denote by loc(x0) the limit of the minimizing sequence generated by the
local strictly-steepest-descent method (α-strictly-steepest-descent method) loc started
from x0 ∈ D.
Remark 27. Let us note that, if starting point x0 satisfies assumption (12), then a
strictly-steepest-descent method stops at the first step. Therefore, Remark 23 remains
true in this case.

3.6. Sets and basins of attraction

Definition 28. Let loc be the strictly-steepest-descent (α-strictly-steepest-descent)
local optimization method on D and y the local minimizer of f in D. Set

Rloc
y = {x ∈ D; y = loc(x)} (15)
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will be called the set of attraction of y with respect to method loc. We will frequently
simplify its notation as Ry.
Remark 29. Local method loc is a parameter of the definition. Although inconve-
nient, it generally cannot be omitted. One important particular situation when, in
fact, we can get rid of this parameter is the case of a C1 function f . Then, instead
of the discrete dynamic system generated by loc, we can use the antigradient flow for
f ; i.e., the family of solutions of equation

γ′(t) = −∇f(γ(t)). (16)

Namely, we say that x ∈ Ry if a positive constant ε exists and curve

γ : (−ε,+∞) −→ D

such that γ is a solution of (16) with

γ(0) = x, lim
t→+∞

γ(t) = y.

Remark 30. Remark 27 implies that, if y satisfies condition (12), then

y ∈ Ry.

Proposition 31. If f is C1 and y is located in a lowland, shelf, or maximum mani-
fold, then

Ry = {y}.

Proof. First, assume that y is an element of a lowland or shelf. Then, neighborhood
A 3 y exists which is contained in the landform. For all x ∈ A, we have

∇f(x) = 0.

If there was a solution of (16) starting from a point different than y, then this solution
would have common points with A; however, this is of course impossible since all
elements of A are stationary points for (16) and any solution would get stuck in any
of them. Therefore, Ry does not contain points other than y.

If y is an element of a maximum manifold, then it either has a neighborhood
contained in that manifold or any its neighborhoods has common points with the
exterior of the manifold. In the first case, we can proceed exactly as in the case of
lowlands and shelves. In the latter case, there are points in a neighborhood of y with a
value of f less than f(y). But those points cannot belong to Ry because the solutions
of (16) have decreasing values of f for increasing times. The other elements of the
neighborhood are stationary points; hence, also in this case,

Ry = {y}.
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Definition 32. The set
RBy =

⋃
x∈By

Rx

will be called the set of attraction of minimum manifold By.
Remark 33. From Remark 30, it follows that, if By is a minimum manifold, then

By ⊂ RBy .

Definition 34. Basin of attraction By of an isolated minimizer y to function f :

D → R is the connected part of set {x ∈ D; f(x) < hy} ∩ (Ry ∪ {y}) that contains y
(y ∈ By), where hy = inf{f(z), z ∈ ∂Ry \ ∂D}.
Definition 35. Basin of attraction BBy of minimum manifold By to function f :

D → R is the connected part of set {x ∈ D; f(x) < hy}∩ (RBy ∪By) that includes By,
where hy = inf{f(z), z ∈ ∂RBy \ ∂D}.
Definition 36. Set

RPy =
⋃
x∈Py

Rx

will be called the set of attraction of lowland Py.
Remark 37. From Remark 30, it follows that, if Py is a lowland, then

Py ⊂ RPy .

Definition 38. Basin of attraction BPy of lowland Py to function f : D → R is
the connected part of set {x ∈ D; f(x) < hy} ∩ (RPy ∪ Py) that includes Py, where
hy = inf{f(z), z ∈ ∂RPy \ ∂D}.
Definition 39. Let Sz ∈ Shelvesf,D be the shelf of graph f in D; then,

RSz =
⋃
ξ∈Sz

{x ∈ D; ξ = loc(x)} (17)

will be called the set of attraction of shelf Sz, with respect to strictly-steepest-descent
(α-strictly-steepest-descent) local optimization method loc.
Definition 40. In the case of C1 function f , we can define the attraction set indepen-
dently upon any local method. Namely, the attraction set of shelf Sz is the following
set

RSz =

{
x ∈ D| ∃ξ ∈ Sz, γ solution of (16) : γ(0) = x, lim

t∈+∞
γ(t) = ξ

}
.

Remark 41. From Remark 30, it follows that, if Sy is a shelf, then

Sy ⊂ RSy .

The illustration of the various landforms in D ⊂ R is shown in Figure 2.
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a b c d e f g h i j k l m n o

Figure 2. Landforms in 1D: d, o are local minimizers, (c, e) = Bd, (c, f) = Rd,
(n, o] = Bo = Ro; (a, b) = P(b−a)/2, [a, c) = BP(b−a)/2 , [b, c) = RP(b−a)/2 ; (i, j) = P(j−i)/2,
[h, k] = BP(j−i)/2 , [h, i] ∪ [j, l) = RP(j−i)/2 ; (g, h) = S(h−g)/2, (f, g] = RS(h−g)/2 ;

(m,n) = U(n−m)/2.

4. Landform separability and completeness of topological
taxonomy

4.1. Separability of landforms

Lemma 42. Shelves, lowlands, and uplands are maximal open-connected subsets of
the connected components of the sets of form f−1(c).

Proof. Lowlands (uplands) are, by definition, maximal open-connected subsets of the
minimal (maximal) manifolds, and shelves are maximal open-connected subsets of
the stationary manifolds. Minimal (maximal) manifolds are connected components of
the sets of form (f |D)

−1
(c) by Theorem 5. Stationary manifolds are such connected

components by their definition.

Theorem 43. All shelves, lowlands, and uplands are pairwise disjoint.

Proof. Let each U , V be a shelf, lowland, or upland. Suppose U ∩ V 6= ∅. Then, f
is constant on O = U ∪ V , f(x) = c for each x ∈ O. Both U and V are maximal
open subsets of the connected components of f−1(c). Since O is open and connected,
contains both U and V , and f |O ≡ c, then by maximality U = V = O.

Lemma 44. If D is connected and f is not constant on D, no subset of D can be an
upland and lowland simultaneously.

Proof. Let U be lowland with f |U = c and B be the associated minimum manifold.By
the definition of minimum manifold, open set V+ ⊃ B exists such that f(ξ) > c

for ξ ∈ (V+ ∩ D) \ B. We know that B is a connected component of (f |D)
−1

(c)
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for some value of c. If U is also an upland, the same reasoning implies that B is
also the associated maximum manifold and open set V− ⊃ B with f(ξ) < c exists
for ξ ∈ (V−∩D)\B. Let V = V+∩V−. Then, V is open, and for each ξ ∈ (V ∩D)\B,
we have both f(ξ) > c and f(ξ) < c; so, V ∩ D = B. Since B = B̄ (Observation 6),
A1 = V ∩D is closed. Since V is open, A2 = D\V is closed as well. Thus, D = A1∪A2,
and since D is connected and B ⊂ A1 6= ∅, we must have A2 = ∅, D ⊂ V , and
consequently, B = V ∩ D = D, so f is constant.

Theorem 45. Let f be non-constant and U be a maximal open-connected subset of D
such that f |U is constant. Then, U is either a lowland, shelf, or upland, and these
possibilities are mutually exclusive.

Proof. Since U is a maximal open-connected subset of a stationary manifold, if it is
neither a lowland nor upland, it is necessarily a shelf (by definition). It cannot be
both a shelf and a lowland or upland (again, by definition), and by Theorem 44, it
cannot be both a lowland and an upland.

Theorem 46. Let U be a lowland, upland, or shelf and H be a stationary manifold.
If U ∩H 6= ∅, then U ⊂ H.

Proof. By definition, U is a maximal open subset of some stationary manifold K.
Since K ∩H ⊃ U ∩H 6= ∅, H and K are non-disjoint stationary manifolds, then, by
Observation 20, we have K = H. Therefore U ⊂ H.

4.2. Separability of attraction sets and basins of attraction

Let us assume in this section that objective f is a C1 function with the Lipschitz-
continuous gradient in admissible domain D.
Theorem 47. Let A and B be different sets, each belonging to one of the following
categories (the same or different):
• minimum manifolds,
• stationary manifolds,
• maximum manifolds.

Then, RA∩RB = ∅. Notice that, for A ∈ MaxManifoldsf,D, we may identify RA with
A.

Proof. First, from the Picard-Lindelöf theorem, we know that, in our case, every
point from D belongs to exactly one trajectory of (16). Of course, this trajectory can
converge to one point at most. Therefore, for each y, y′ ∈ D such that y 6= y′, we
have

Ry ∩Ry′ = ∅. (18)

If C is a minimum or stationary manifold, then the definition of attraction set implies
that

RC =
⋃
y∈C

Ry.
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Maximum manifolds consist of stationary points for (16) that do not have nontrivial
attraction sets. Thus, for any z belonging to a maximum manifold, we have

Rz = {z}.

Hence, if C is a maximum manifold, then we have

RC =
⋃
z∈C
{z} =

⋃
z∈C

Rz.

From the previous sections, we know that, if A and B satisfy the assumptions of this
theorem, then

A ∩B = ∅.
Therefore, we obtain

RA ∩RB =

⋃
y∈A

Ry

 ∩(⋃
z∈B

Rz

)
= ∅.

Remark 48. The above theorem is generally not true if A and B are lowlands,
shelves, or uplands because the closures of these landforms can have common points
as in Fig. 3, which in turn can provide quite large common parts of the attraction
sets. Nevertheless, using the same reasoning as in the proof of the theorem, we can
obtain the following results:

y y'
z

Figure 3. Two separate lowlands Py,Py′ in 2D sharing point z in their closures.

Proposition 49. Let both A and B be a lowland or shelf. Assume additionally that
A ∩B = ∅. Then, RA ∩RB = ∅.

Proof. First, observe that the respective definitions imply that, if C is a lowland or
shelf, then

RC =
⋃
y∈C

Ry.

Therefore, similar to the proof of the preceding theorem, using assumption A∩B = ∅,
we obtain

RA ∩RB =

⋃
y∈A

Ry

 ∩
⋃
z∈B

Rz

 = ∅.
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Proposition 50. Let A,B ⊂ D, then BA ∩BB = ∅ if one of the following conditions
hold:
1. A,B ∈ MManifoldsf,D and A 6= B,

2. A,B ∈ Lowlandsf,D and A ∩B = ∅,
3. A ∈ MManifoldsf,D and B ∈ Lowlandsf,D and A ∩B = ∅.

Notice that category MManifoldsf,D also contains isolated local minimizers to f on
D.

Proof. Since we know that BA ⊂ RA and BB ⊂ RB , the first part of the thesis follows
from Theorem 47. The second part of the thesis follows from Proposition 49 in a
similar way. If B is a lowland such that A ∩ B = ∅, then a minimum manifold C

exists for which C 6= A and B ⊂ C. Moreover, from Definitions 38 and 36, 32, we
have

BB ⊂ RB =
⋃
x∈B

Rx ⊂
⋃
x∈C

Rx = RC .

The last part of the thesis follows then again from Theorem 47.

5. Conclusions and perspective of applications

This paper delivers exhaustive taxonomies of both the objective characteristics (local
approach) as well as the specific subsets of the candidate solutions (landform taxo-
nomy) associated with ill-posed GOPs. The taxonomies are mainly motivated and
devoted (but not restricted) to the problems appearing in the inverse parametric ana-
lysis, which consists of restoring the parameters of the partial differential equations
and variational partial differential equations. Such problems are formulated as global
optimization ones, where the objective is to minimize the misfit between the measured
and simulated forward solutions.

Special attention was paid to the problems in which the objective (misfit) is
insensitive with respect to at least one decision variable (γ-insensitive problems C6
and C7) and the problems in which the objective (misfit) is insensitive with respect to
all of the decision variables on the dense subsets of the positive measure (γ-unspecified
problems C8 and C9).

We introduced the topological definitions of some interesting sets appearing in the
objective landscape imposed by the problems mentioned above as minimummanifolds,
lowlands, stationary manifolds, shelves, and their sets of attraction and basins of
attraction as well as maximum manifolds and uplands. Both cases of the continuous
and continuously differentiable objective function are simultaneously considered.

We have proven several important features that ensure the quality of the topolo-
gical taxonomy. In particular, lowlands, uplands, and shelves are pairwise disjoint (see
theorem 43). Moreover, theorem 45 shows the completeness of this taxonomy; i.e.,
lowlands, uplands, and shelves are the only maximal open-connected proper subsets
in the admissible domain interior for which the objective takes a constant value.
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The separability of the sets and basins of attraction were studied for the case of
continuously differentiable objectives only. In particular, it was proven that the local
minimizers as well as the minimum and stationary manifolds have disjoint sets of
attractions (see Theorem 47). A similar result was obtained for the sets of attraction
of the lowlands and shelves (see Proposition 49). Also, the basins of attraction of
the local minimizers, lowlands, and shelves are pairwise disjoint under some mild
assumptions (see Proposition 50). All of these sets are disjoint with uplands.

The taxonomies are helpful for the more precise definition of ill-conditioned GOPs
and inverse parametric problems as well, being the necessary introductory part to
each multimodal analysis [19]. In particular, they allow for defining lowlands as
separate admissible subregions of low sensitivity, which might represent the common
behavior of the analyzed system, different to those represented by the parameter
vectors belonging to some other lowland.

Moreover, the number and size of the uplands and shelves (being deceptive re-
gions) are important factors that allow us to evaluate the problem difficulty. Such
information might be helpful for creating and profiling the complex strategies that
solve such problems, boosting the recognition of minimum manifolds, lowlands, and
their basins of attraction as well as allowing us to leave and omit uplands and shelves.

The introduced class of the α-steepest-descent local optimization methods (see
Definition 24) can be helpful for defining the sets and basins of attractions in an
approximated way (with the accuracy controlled by parameter α). It might be uti-
lized in the case of objectives for which the maximum slope could not be explicitly
determined; e.g., by computing the objective gradient in an exact or approximated
way. This new idea seems to be disputable and needs further research (in particular,
to study the a priori evaluation of the landform identification error in the Hausdorff
norm).

The above theory supports the stochastic strategies of multimodal analysis gathe-
red in [14,19]. It may be also used to study the features of a Clustered Genetic Search
(CGS) [21,28] and Hierarchic Memetic Strategy (HMS) dedicated for approximating
lowlands and their basins of attraction [15,16]. The solving of real-world engineering
ill-posed inverse problems from Classes C.6 – C.9 by the methods mentioned above is
presented in papers [2, 3, 11,22,23].

Acknowledgements

The work presented in this paper has been partially supported by the Polish National
Science Center grant no. DEC-2015/17/B/ST6/01867 and by the AGH statutory
research grant no. 11.11.230.124.

References

[1] Addis B.: Global Optimization Using Local Searches. Ph.D. thesis, Universitá
Degli Studi di Firenze, 2004.



Ea
rly

bir
d

176 Marcin Łoś, Maciej Smołka, Robert Schaefer, Jakub Sawicki

[2] Barabasz B., Gajda-Zagórska E., Migórski S., Paszyński M., Schaefer R., Smołka
M.: A hybrid algorithm for solving inverse problems in elasticity. In: International
Journal of Applied Mathematics and Computer Science, vol. 24(4), pp. 865–886,
2014.

[3] Barabasz B., Migórski S., Schaefer R., Paszyński M.: Multi-deme, twin adaptive
strategy hp-HGS. In: Inverse Problems in Science and Engineering, vol. 19(1),
pp. 3–16, 2011.

[4] Beilina L., Klibanov M.V.: Approximate Global Convergence and Adaptivity for
Coefficient Inverse Problems. Springer, 2012. URL http://dx.doi.org/10.
1007/978-1-4419-7805-9.

[5] Boender C.G.E., Rinnoy-Kan A.H.G., Stougie L., Timmer G.T.: A Stochastic
Method for Global Optimization. In: Mathematical Programming, vol. 22, pp.
125–140, 1982.

[6] Cabib E., Davini C., Chong-Quing R.: A problem in the optimal design of net-
works under transverse loading. In: Quarterly of Appl. Math., vol. 48(2), pp.
251–263, 1990.

[7] Cotta C., Schaefer R.: Complex Metaheuristics. In: Journal of Computational
Sciences, vol. 17, pp. 171–173, 2016. URL http://dx.doi.org/doi:10.1016/
j.jocs.2016.06.001.

[8] Dixon L.C.W., Szegö G.P., eds.: Toward Global Optimization. North Holland,
1975.

[9] Dixon L.C.W., Szegö G.P., eds.: Towards Global Optimisation 2. North-Holland,
Amsterdam, 1978.

[10] Duan Q., Sorooshian S., Gupta V.: Effective and Efficient Global Optimization
for Conceptual Rainfall-Runoff Models. In: Water Resource Research, vol. 28(4),
pp. 1015–1031, 1992.

[11] Gajda-Zagórska E., Schaefer R., Smołka M., Paszyński M., Pardo D.: A
hybrid method for inversion of 3D DC logging measurements. In: Natu-
ral Computing, (3), pp. 355–374, 2014. URL http://dx.doi.org/10.1007/
s11047-014-9440-y.

[12] Isshiki M., Sinclair D., Kaneko S.: Lens Design: Global Optimization of Both Per-
formance and Tolerance Sensitivity. In: International Optical Design, p. TuA5.
Optical Society of America, 2006. URL http://dx.doi.org/10.1364/IODC.
2006.TuA5.

[13] Kabanikhin S.I.: Definitions and examples of inverse ill-posed problems. In:
Journal of Inverse and Ill-Posed Problems, vol. 16, pp. 317–357, 2008. URL
http://dx.doi.org/10.1515/JIIP.2008.069.

[14] Koper K., Wysession M., Wiens D.: Multimodal function optimization with a
niching genetic algorithm: A seismological example. In: Bulletin of the Seismo-
logical Society of America, vol. 89(4), pp. 978–988, 1999.

http://dx.doi.org/10.1007/978-1-4419-7805-9
http://dx.doi.org/10.1007/978-1-4419-7805-9
http://dx.doi.org/doi:10.1016/j.jocs.2016.06.001
http://dx.doi.org/doi:10.1016/j.jocs.2016.06.001
http://dx.doi.org/10.1007/s11047-014-9440-y
http://dx.doi.org/10.1007/s11047-014-9440-y
http://dx.doi.org/10.1364/IODC.2006.TuA5
http://dx.doi.org/10.1364/IODC.2006.TuA5
http://dx.doi.org/10.1515/JIIP.2008.069


Ea
rly

bir
d

Misfit landforms imposed by ill-conditioned inverse parametric problems 177

[15] Łoś M., Sawicki J., Smołka M., Schaefer R.: Memetic approach for irremediable
ill-conditioned parametric inverse problems. In: Procedia Computer Science, vol.
108C, pp. 867–876. Elsevier, 2017. URL http://dx.doi.org/10.1016/j.procs.
2017.05.007.

[16] Łoś M., Schaefer R., Sawicki J., Smołka M.: Local Misfit Approximation in
Memetic Solving of Ill-posed Inverse Problems. In: Lecture Notes in Computer
Science, vol. 10199, pp. 297–309. Springer, 2017.

[17] Pardalos P., Romeijn H., eds.: Handbook of Global Optimization, vol. 2. Springer
US, 2002. URL http://dx.doi.org/10.1007/978-1-4757-5362-2.

[18] Paruch M., Majchrzak E.: Identification of tumor region parameters using evo-
lutionary algorithm and multiple reciprocity boundary element method. In: En-
gineering Applications of Artificial Intelligence, vol. 20(5), pp. 647–655, 2007.

[19] Preuss M.: Multimodal Optimization by Means of Evolutionary Algorithms. Na-
tural Computing. Springer, 2015.

[20] Rinnoy-Kan A.H.G., Timmer G.T.: Stochastic Global Optimization Methods.
Part 1: Clustering Methods. In: Mathematical Programming, vol. 39, pp. 27–56,
1987.

[21] Schaefer R., Adamska K., Telega H.: Genetic Clustering in Continuous Lands-
cape Exploration. In: Engineering Applications of Artificial Intelligence (EAAI),
vol. 17, pp. 407–416, 2004.

[22] Smołka M., Gajda-Zagórska E., Schaefer R., Paszyński M., Pardo D.: A hybrid
method for inversion of 3D AC logging measurements. In: Applied Soft Compu-
ting, vol. 36, pp. 422–456, 2015.

[23] Smołka M., Schaefer R., Paszyński M., Pardo D., Álvarez-Aramberri J.: An
Agent-oriented Hierarchic Strategy for Solving Inverse Problems. In: Interna-
tional Journal of Applied Mathematics and Computer Science, vol. 25(3), pp.
483–498, 2015. URL http://dx.doi.org/10.1515/amcs-2015-0036.

[24] Tikhonov A., Goncharsky A., Stepanov V., Yagola A.: Numerical Methods for
the Solution of Ill-Posed Problems. Kluwer, 1995.

[25] Tikhonov A.N., Goncharskii A., Stepanov, V.V., Yagola A.G.: Numerical Met-
hods for the Solution of Ill-Posed Problems. Springer-Verlag, 1995.

[26] Törn A.: A Search Clustering Approach to Global Optimization. In: Dixon and
Szegö [9], pp. 49–62.

[27] Törn A., Ali M.M., Viitanen S.: Stochastic Global Optimization: Problem Clas-
ses and Solution Techniques. In: Journal of Global Optimization, vol. 14, pp.
437–447, 1999.

[28] Wolny A., Schaefer R.: Improving Population-Based Algorithms with Fitness
Deterioration. In: Journal of Telecommunications and Information Technology,
(4), pp. 31–44, 2011.

[29] Zeidler E.: Nonlinear Functional Analysis and its Application. II/A: Linear Mo-
notone Operators. Springer, 2000.

http://dx.doi.org/10.1016/j.procs.2017.05.007
http://dx.doi.org/10.1016/j.procs.2017.05.007
http://dx.doi.org/10.1007/978-1-4757-5362-2
http://dx.doi.org/10.1515/amcs-2015-0036


Ea
rly

bir
d

178 Marcin Łoś, Maciej Smołka, Robert Schaefer, Jakub Sawicki

Affiliations

Marcin Łoś
AGH University of Science and Technology, Krakow, Poland, marcin.los.91@gmail.com

Maciej Smołka
AGH University of Science and Technology, Krakow, Poland, smolka@agh.edu.pl

Robert Schaefer
AGH University of Science and Technology, Krakow, Poland, schaefer@agh.edu.pl

Jakub Sawicki
AGH University of Science and Technology, Krakow, Poland, jsawicki@agh.edu.pl

Received: ???
Revised: ???
Accepted: ???


	Introduction
	Taxonomy of ill-conditioned inverse problems – the local approach
	Topological taxonomy of GOP's landforms
	Global optimization problems in continuous domains
	Minimum manifolds and lowlands
	Maximum manifolds and uplands
	Stationary manifolds and shelves
	Steepest- and strictly-descent local optimization methods
	Sets and basins of attraction

	Landform separability and completeness of topological taxonomy
	Separability of landforms
	Separability of attraction sets and basins of attraction

	Conclusions and perspective of applications

