PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suppression of rotating machine shaft-line torsional vibrations by a driving asynchronous motor using two advanced control methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many industrial rotating machines driven by asynchronous motors are often affected by detrimental torsional vibrations. In this paper, a method of attenuation of torsional vibrations in such objects is proposed. Here, an asynchronous motor under proper control can simultaneously operate as a source of drive and actuator. Namely, by means of the proper control of motor operation, it is possible to suppress torsional vibrations in the object under study. Using this approach, both transient and steady-state torsional vibrations of the rotating machine drive system can be effectively attenuated, and its precise operational motions can be assured. The theoretical investigations are conducted by means of a structural mechanical model of the drive system and an advanced circuit model of the asynchronous motor controlled using two methods: the direct torque control – space vector modulation (DTC-SVM) and the rotational velocity-controlled torque (RVCT) based on the momentary rotational velocity of the driven machine working tool. From the obtained results it follows that by means of the RVCT technique steady-state torsional vibrations induced harmonically and transient torsional vibrations excited by switching various types of control on and off can be suppressed as effectively as using the advanced vector method DTC-SVM.
Rocznik
Strony
art. no. e147925
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
  • Schneider Electric Polska Sp. z o.o, ul. Konstruktorska 12, 02-673 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] E.J. Nestorides. A Handbook on Torsional Vibration. B.I.C.E.R.A.: Cambridge University Press, 1958.
  • [2] A. Laschet. Simulation von Antriebssystemen. Berlin, London, New York: Springer-Verlag, 1988.
  • [3] P.M. Przybyłowicz, “Torsional vibration control by active piezo-electric system,” J. Theor. Appl. Mech., vol. 33, no. 4, pp. 809–823, 1995.
  • [4] B.F. Spencer Jr., S.J. Dyke, M.K. Sain, and J.D. Carlson, “Phenomenological model for magnetorheological dampers”. J. Eng. Mech., vol. 123, no. 3, pp. 230–238, 1997, doi: 10.1061/(ASCE)0733-9399(1997)123:3(230).
  • [5] J. Wang and G. Meng, “Study of the vibration control of a rotor system using a magnetorheological fluid damper,” J. Vib. Control, vol. 11, no. 2, pp. 263–276, 2005, doi: 10.1177/1077546305049481.
  • [6] A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid,” J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  • [7] T. Szolc, A. Pochanke, R. Konowrocki, and D. Pisarski, “Suppression and control of torsional vibrations of the turbo-generator shaft-lines using rotary magneto-rheological dampers,” in Proc. 12th Virtual Conference on Vibrations in Rotating Machinery (VIRM), Great Britain, 2020, pp. 201–211.
  • [8] A. Bisoi, R. Bhattacharyya, and A.K. Samantaray, “Speed control of 3-phase induction motor in presence of Sommerfeld effect,” in: Advances in mechanism design II, Beran, J., Bílek, M., and Žabka, P., Eds., Springer International Publishing, Cham, 2017, pp. 169–176, doi: 10.1007/978-3-319-44087-3_22.
  • [9] S.K. Bharti and A.K. Samantaray, “Resonant capture and Sommerfeld effect due to torsional vibrations in a double Cardan joint driveline,” Commun. Nonlinear Sci. Numer. Simul., vol. 97, p. 105728, 2021, doi: 10.1016/j.cnsns.2021.105728.
  • [10] I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., vol. 1A-22, no. 5, pp. 820–827, 1986, doi: 10.1109/TIA.1986.4504799.
  • [11] Y. Xue, X. Xu, T.G. Habetler, and D.M. Divan, “A low cost stator flux oriented voltage source variable speed drive,” Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, USA, 1990, vol.1, pp. 410–415, doi: 10.1109/IAS.1990.152218.
  • [12] G.S. Buja and M.P. Ka´zmierkowski, “Direct torque control of PWM inverter-fed AC motors – a survey,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744–757, 2004, doi: 10.1109/TIE.2004.831717.
  • [13] T.P. Holopainen, P. Jörg, J. Niiranen, and D. Andreo, “Electric motors and drives in torsional vibration analysis and design,” in Proc. of Forty-Second Turbomachinery Symposium, USA, October 1–3, 2013.
  • [14] A. Arkkio and T.P. Holopainen, “Space-vector models for torsional vibration of cage induction motors,” in Proc. 18th International Conference on Electrical Machines and Systems (ICEMS), Thailand, October 25–28, 2015, pp. 1956–1962.
  • [15] F. Wang, Z. Zhang, X. Mei, J. Rodríguez, and R. Kennel, “Advanced control strategies of induction machine: Field Oriented Control, Direct Torque Control and Model Predictive Control,” Energies, vol. 11, p. 120, 2018, doi: 10.3390/en11010120.
  • [16] T. Szolc, R. Konowrocki, D. Pisarski, and A. Pochanke, “Influence of various control strategies on transient torsional vibrations of rotor-machines driven by asynchronous motors,” in Proc. 10th IFToMM International Conference on Rotor Dynamics, “Mechanisms and Machine Science,” Springer International Publishing, vol. 63, no.4, 2018; pp. 205–220, doi: 10.1007/978-3-319-99272-3_15.
  • [17] M.M. Alshbib, M.M. Elgbaily, I.M. Alsofyani, and F. Anayi, “Performance enhancement of direct torque and rotor flux control (DTRFC) of a three-phase induction motor over the entire speed range: Experimental validation,” Machines, vol. 11, p. 22, 2023, doi: 10.3390/machines11010022.
  • [18] T. Szolc, R. Konowrocki, M. Michajłow, and A. Pręgowska, “An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors,” Mech. Syst. Signal Proc., vol. 49, pp. 118–134, 2014, doi: 10.1016/j.ymssp.2014.04.004.
  • [19] T. Szolc, “On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations,” Int. J. Rotating Mach., vol. 6, no. 2, pp. 135–149, 2000, doi: 10.1155/S1023621X00000130.
  • [20] Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementation, User Guide, Microsemi Corporation. 2013, 50200359-0/11.13. [Online]. Available: https://www.microsemi.com/document-portal/doc_view/132799-park-inverse-park-and-clarke-inverse-clarke-transformations-mss-software-implementation-user-guide
  • [21] D. Bellan, “Clarke transformation solution of asymmetrical transients in three-phase circuits,” Energies, vol. 13, p. 5231, 2020, doi: 10.3390/en13195231.
  • [22] X. Chen, H. Wei, T. Deng, Z. He, and S. Zhao, “Investigation of electromechanical coupling torsional vibration and stability in a high-speed permanent magnet synchronous motor driven system,” Appl. Math. Model., vol. 64, pp. 235–248, 2018, doi: 10.1016/j.apm.2018.07.030.
  • [23] H. Akagi, Y. Kanazawa, and A. Nabae., “Generalized theory of the instantaneous reactive power in the tree-phase circuits,” in Proc. IEEE International Power Electronic Conference (IPEC’83), 1983, pp. 1375–1386, doi: 10.1002/eej.4391030409.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f12bc86-55f8-4ab5-b00e-ce7db73c1ed4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.