PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simulation and development of energy-efficient vibration machines operating in resonant modes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Symulacja i rozwój energooszczędnych maszyn wibracyjnych działających w trybach rezonansowych
Języki publikacji
EN
Abstrakty
EN
Studied in the paper are the dynamic characteristic of a vibrating machine with two vibrating elements. The vibrating machine is simulated as a discrete-continuous system. Set up are the motion equations, and determined are the basic parameters of the vibration machine. Defined are the criteria for the first and the second stability ranges of the vibration machine as a resonance system. Determined are the optimal numerical values of the basic parameters of the vibration machine which are required for ensuring energy-efficient operation of the machine. Proposed is a new energy-efficient vibration machine designed for forming concrete foundation blocks.
PL
W artykule opisano dynamiczną charakterystykę wibrującej maszyny z dwoma elementami wibrującymi. Maszyna wibracyjna jest symulowana jako dyskretny system ciągły. Ustawione są równania ruchu i określone są podstawowe parametry maszyny wibracyjnej. Zdefiniowane są kryteria pierwszego i drugiego zakresu stabilności urządzenia wibracyjnego jako systemu rezonansowego. Określone są optymalne wartości liczbowe podstawowych parametrów maszyny wibracyjnej, które są wymagane do zapewnienia energooszczędnej pracy maszyny. Proponowana jest nowa energooszczędna maszyna wibracyjna przeznaczona do formowania betonowych bloków fundamentowych.
Rocznik
Strony
60--64
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Kyiv National University of Construction and Architecture, 31 Povitroflotsky av., Kyiv, 03037, Ukraine
  • Kyiv National University of Construction and Architecture, 31 Povitroflotsky av., Kyiv, 03037, Ukraine
  • Kyiv National University of Construction and Architecture, 31 Povitroflotsky av., Kyiv, 03037, Ukraine
  • Vinnytsia National Technical University
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
  • Institute of Information and Computational Technologies CS MES RK
  • Al-Farabi Kazakh National University, Kazakhstan
Bibliografia
  • [1] Nazarenko I.I., Theory of vibration machines for compacting concrete mixtures, which is based on the results of the synthesis of the discrete-continuous system, All-Ukrainian Scientific and Technical Journal, Vibrations in Engineering and Technologies Vinnytsia, 4 (2009), nr 56, 55-59
  • [2] Nazarenko I.I., Applied problems of vibration systems, Slovo, 440
  • [3] Butlin T., Anti-optimization for modeling the vibration of locally nonlinear structures - An exploratory study, Journal of Sound and Vibration, 332 (2013), 26, 7099-71224.
  • [4] Abolfathia A., O’Boy D.J., Walsha S.J., Fisherb S.A., Investigating the sources of variability in the dynamic response of built-up structures through a linear analytical model, Journal of Sound and Vibration, 387 (2017), 163-176
  • [5] Bociana M., Jamroziaka K., Kosobudzki M., Kulisiewicz M., Analysis of purely harmonic vibrations in non-linear dynamic systems on the example of the non-linear degenerate system, Procedia Engineering, 199 (2017), 522-529
  • [6] Kuznetsov N.K., Lapshin V.L., Eliseyev A.V., Features of Dynamic Damping in Linear Mechanical System with Additional External Excitation, Procedia Engineering, 206 (2017), 236- 241
  • [7] Londoño L.M., Neild S.A., Cooper J.E., Identification of backbone curves of nonlinear systems from resonance decay responses, Journal of Sound and Vibration, 348 (2015), 224- 238
  • [8] Hill T.L., Cammarano A., Neild S.A., Wagg D.J., Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves, Journal of Sound and Vibration, 349 (2015), 276-288
  • [9] Kachapi H., Dukkipati R., Hashemi K., and etc., Analysis of the nonlinear vibration of a two-mass–spring system with linear and nonlinear stiffness, Nonlinear Analysis: Real World Applications, 11 (2017), 3, 1431-1441
  • [10] Lanets O.S, Experimental confirmation of the availability of additional amplification of vibrations in high-efficient resonance mechanical vibration systems based on the n-phase vibration theory, All-Ukrainian Scientific and Technical Journal Vibrations in Engineering and Technologies, 3 (55), (2009), 29-34
  • [11] Nazarenko I.I., Study and the development off energy-efficient vibration machines based on the stress-strain state of metal and technological environments, The VIII International Conference Heavy Machinery HM, (2014), 85-89
  • [12] Nazarenko I.I., Studies of energy-saving vibration machines with account for the stress-strain state of technological environment, The IX International Conference Heavy Machinery HM, Zlatibor, Serbia, (2017), 14-15.
  • [13] Kotyra A., Wójcik W., Gromaszek K. et al., Assessment of biomass-coal co-combustion on the basis of flame image, Przegląd Elektrotechniczny, 88 (2012), n.11B, 295-297.
  • [14] Kukharchuk V.V., Hraniak V.F., Vedmitskyi Y.G., Bogachuk V.V., and etc., Noncontact method of temperature measurement based on the phenomenon of the luminophor temperature decreasing, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (2016), 100312F
  • [15] Kukharchuk V.V., Bogachuk V.V., Hraniak V.F., Wójcik W., Suleimenov B., Karnakova G., Method of magneto-elastic control of mechanic rigidity in assemblies of hydropower units, Proc. SPIE 10445, (2017), 104456A
  • [16] Vedmitskyi Y.G., Kukharchuk V.V., Hraniak V.F., New nonsystem physical quantities for vibration monitoring of transient processes at hydropower facilities, integral vibratory accelerations, Przeglad Elektrotechniczny, 93 (2017), nr. 3, 69- 72.
  • [17] Vasilevskyi O.M., Calibration method to assess the accuracy of measurement devices using the theory of uncertainty, International Journal of Metrology and Quality Engineering, 5 (2014), 403
  • [18] Romanowski A., Grudzień K., Garbaa H., Jackowska-Strumiłło L., Parametric methods for ECT inverse problem solution in solid flow monitoring, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 7 (2017), nr. 1, 50-54
  • [19] Vasilevskyi O.M., Yakovlev M.Y., Kulakov P.I., Spectral method to evaluate the uncertainty of dynamic measurements, Technical Electrodynamics, 4 (2017), 72-78
  • [20] Vasilevskyi O.M., Metrological characteristics of the torque measurement of electric motors, International Journal of Metrology and Quality Engineering, 8 (2017), 7
  • [21] Smolarz A., Lytvynenko V., Wojcik., et al., Multifractal spectra classification of flame luminosity waveforms, Proc. SPIE, 10808 (2018), 1080813
  • [22] Vasilevskyi O.M., Kulakov I., Ovchynnykov K.V., Didych V.M., Evaluation of dynamic measurement uncertainty in the time domain in the application to high speed rotating machinery, International Journal of Metrology and Quality Engineering, 8 (2017), 25, DOI: 10.1051/ijmqe/2017019
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f11e117-935a-445a-a794-153eaf39b4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.