Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various approaches have been proposed to monitor the state of machines by intelligent techniques such as the neural network, fuzzy logic, neuro-fuzzy, pattern recognition. However, the use of LS-SVM. This article presents an automatic computerized system for the diagnosis and the monitoring of faults between turns of the stator in IM applying the LS-SVM least square support vector machine. in this study for the detection of short circuit faults in the stator winding of the induction motor. Since it requires a mathematical model suitable for modelling defects, a defective IM model is presented. The proposed method uses the stator current as input and at the output decides the state of the motor, indicating the severity of the short-circuit fault.
Czasopismo
Rocznik
Tom
Strony
35--41
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- LEDMASED Laboratory, University of Laghouat, 03000, Algeria
autor
- Department of Electrical Engineering, Kasdi Merbah University, Ouargla, Algeria
autor
- (LACoSERE) University of Laghouat, 03000, Algeria
autor
- IREENA, Saint Nazaire, Polytech’Nantes, France
Bibliografia
- 1. Zhang P, Du Y, Habetler TG, Lu B. A survey on condition monitoring and protection methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 2011;47:1: 34-46.
- 2. Gandhi A, Corrigan T, Parsa L. Recent advances in modeling and online detectionof stator inter-turn faults in electrical motors. IEEE Trans. Ind. Electron. 2011; 58(5):1564-1575.
- 3. Doğan Z, Selçuk R. A diagnosis of stator winding fault based on empirical mode decomposition in PMSMs. Balkan Journal of Electrical and Computer Engineering. 2020; 8(1):73-80. https://doi.org/10.17694/bajece.650484
- 4. Roshanfekr R, Jalilian A. An approach to discriminate between types of rotor and stator winding faults in wound rotor induction machines. Iranian Conference on Electrical Engineering (ICEE). 2018.
- 5. Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault –tolerant techniques part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015; 62(6): 3757-3767. https://doi.org/10.1109/TIE.2015.2417501
- 6. Bhattacharyya S, Sen D, Adhvaryyu S, Mukherjee C. Induction motor fault diagnosis by motor current signature analysis and neural network techniques. Journal of Advanced Computing and Communication Technologies. 2015;3(1):12-18.
- 7. Shifat TA, Hur J-W. An improved stator winding short-circuit fault diagnosis using adaboost algorithm. International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2020.
- 8. Dash R, Subudhi B. Stator inter-turn fault detection of an induction motor using neuro-fuzzy techniques. International Journal on Archives of Control Sciences. 2010;20(3):263-276. https://doi.org/10.2478/v10170-010-0022-7
- 9. Campos-Delgado DU, Arce-Santana ER, EspinozaTrejo DR. Edge optimisation for parameter identification of induction motors. IET Electr. Power Appl. 2011; 5(8):668-675.
- 10. Wang S, Dinavahi V, Xiao J. Multi-rate real-time model-based parameter estimation and state identification for induction motors. IET Electr. Power Appl. 2013;7(1):77-86. https://doi.org/10.1049/iet-epa.2012.0116
- 11. Hamoudi A, Kouadri B. Stator fault detection in induction machines by parameter estimation using trust region algorithms. Proceedings of the First. Analyses. IEEE Trans. Ind. Informatics. 2014; 10(2):1348-1360. https://doi.org/10.15676/ijeei.2017.9.1.3
- 12. Melin P, Soto J, Castillo O, Soria J. A new approach for time series prediction using ensembles of ANFIS models. Expert Systems with Applications. 2012; 39(3):3494-3506. https://doi.org/10.1016/j.eswa.2011.09.040
- 13. Zhang Y, Wang P, Ni T, Cheng P, Lei S. Wind power prediction based on LS-SVM model with error correction. Advances in Electrical and Computer Engineering. 2017; 17(1):3-8. https://doi.org/10.4316/AECE.2017.01001
- 14. Suykens J, Gestel JV, Brabanter JD, Moor BD, Vandewalle J. Least square support vector machines. World Scientific Publishers, Singapore, 2002.
- 15. Bu WS, Li Z. LS-SVM inverse system decoupling control strategy of a bearingless induction motor considering stator current dynamics. IEEE Access. 2019. https://doi.org/10.1109/ACCESS.2019.2939258
- 16. Li K, Cheng G, Sun X, Yang Z. A nonlinear flux linkage model for bearingless induction motor based on GWO-LSSVM, IEEE Access PP(99):1-1 March 2019.
- 17. Mahdjoubi A, Zegnini B, Belkheiri M. Prediction of critical flashover voltage of pollutedInsulators under sec and rain conditions using least. Squares support vector machines (LS-SVM). Diagnostyka. 2019; 20(1):49-54. https://doi.org/10.29354/diag/99854
- 18. Jannati M, Idris NRN, Salam Z. A new method for modeling and vector control of unbalanced induction motors. Energy Conversion Congress and Exposition (ECCE). 2012: 3625-3632.
- 19. Bessedik SA, Hadi H. Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation. Electric Power Systems Research. 2013; 104:87-92. https://doi.org/10.1016/j.epsr.2013.06.013
- 20. Bessedik SA, Djekidel R, Ameur A. Performance of different kernel functions for LS-SVM-Grey Wolf Optimiser to estimate flashover voltage of polluted insulators. IET Science, Measurement & Technology. 2018;12(6):739-745. https://doi.org/10.1049/iet-smt.2017.0486
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f0fefb4-4f3f-4318-bcba-674c9f3b3823