PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Least square support vectors machines approach to diagnosis of stator winding short circuit fault in induction motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various approaches have been proposed to monitor the state of machines by intelligent techniques such as the neural network, fuzzy logic, neuro-fuzzy, pattern recognition. However, the use of LS-SVM. This article presents an automatic computerized system for the diagnosis and the monitoring of faults between turns of the stator in IM applying the LS-SVM least square support vector machine. in this study for the detection of short circuit faults in the stator winding of the induction motor. Since it requires a mathematical model suitable for modelling defects, a defective IM model is presented. The proposed method uses the stator current as input and at the output decides the state of the motor, indicating the severity of the short-circuit fault.
Czasopismo
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • LEDMASED Laboratory, University of Laghouat, 03000, Algeria
autor
  • Department of Electrical Engineering, Kasdi Merbah University, Ouargla, Algeria
  • (LACoSERE) University of Laghouat, 03000, Algeria
  • IREENA, Saint Nazaire, Polytech’Nantes, France
Bibliografia
  • 1. Zhang P, Du Y, Habetler TG, Lu B. A survey on condition monitoring and protection methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 2011;47:1: 34-46.
  • 2. Gandhi A, Corrigan T, Parsa L. Recent advances in modeling and online detectionof stator inter-turn faults in electrical motors. IEEE Trans. Ind. Electron. 2011; 58(5):1564-1575.
  • 3. Doğan Z, Selçuk R. A diagnosis of stator winding fault based on empirical mode decomposition in PMSMs. Balkan Journal of Electrical and Computer Engineering. 2020; 8(1):73-80. https://doi.org/10.17694/bajece.650484
  • 4. Roshanfekr R, Jalilian A. An approach to discriminate between types of rotor and stator winding faults in wound rotor induction machines. Iranian Conference on Electrical Engineering (ICEE). 2018.
  • 5. Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault –tolerant techniques part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015; 62(6): 3757-3767. https://doi.org/10.1109/TIE.2015.2417501
  • 6. Bhattacharyya S, Sen D, Adhvaryyu S, Mukherjee C. Induction motor fault diagnosis by motor current signature analysis and neural network techniques. Journal of Advanced Computing and Communication Technologies. 2015;3(1):12-18.
  • 7. Shifat TA, Hur J-W. An improved stator winding short-circuit fault diagnosis using adaboost algorithm. International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2020.
  • 8. Dash R, Subudhi B. Stator inter-turn fault detection of an induction motor using neuro-fuzzy techniques. International Journal on Archives of Control Sciences. 2010;20(3):263-276. https://doi.org/10.2478/v10170-010-0022-7
  • 9. Campos-Delgado DU, Arce-Santana ER, EspinozaTrejo DR. Edge optimisation for parameter identification of induction motors. IET Electr. Power Appl. 2011; 5(8):668-675.
  • 10. Wang S, Dinavahi V, Xiao J. Multi-rate real-time model-based parameter estimation and state identification for induction motors. IET Electr. Power Appl. 2013;7(1):77-86. https://doi.org/10.1049/iet-epa.2012.0116
  • 11. Hamoudi A, Kouadri B. Stator fault detection in induction machines by parameter estimation using trust region algorithms. Proceedings of the First. Analyses. IEEE Trans. Ind. Informatics. 2014; 10(2):1348-1360. https://doi.org/10.15676/ijeei.2017.9.1.3
  • 12. Melin P, Soto J, Castillo O, Soria J. A new approach for time series prediction using ensembles of ANFIS models. Expert Systems with Applications. 2012; 39(3):3494-3506. https://doi.org/10.1016/j.eswa.2011.09.040
  • 13. Zhang Y, Wang P, Ni T, Cheng P, Lei S. Wind power prediction based on LS-SVM model with error correction. Advances in Electrical and Computer Engineering. 2017; 17(1):3-8. https://doi.org/10.4316/AECE.2017.01001
  • 14. Suykens J, Gestel JV, Brabanter JD, Moor BD, Vandewalle J. Least square support vector machines. World Scientific Publishers, Singapore, 2002.
  • 15. Bu WS, Li Z. LS-SVM inverse system decoupling control strategy of a bearingless induction motor considering stator current dynamics. IEEE Access. 2019. https://doi.org/10.1109/ACCESS.2019.2939258
  • 16. Li K, Cheng G, Sun X, Yang Z. A nonlinear flux linkage model for bearingless induction motor based on GWO-LSSVM, IEEE Access PP(99):1-1 March 2019.
  • 17. Mahdjoubi A, Zegnini B, Belkheiri M. Prediction of critical flashover voltage of pollutedInsulators under sec and rain conditions using least. Squares support vector machines (LS-SVM). Diagnostyka. 2019; 20(1):49-54. https://doi.org/10.29354/diag/99854
  • 18. Jannati M, Idris NRN, Salam Z. A new method for modeling and vector control of unbalanced induction motors. Energy Conversion Congress and Exposition (ECCE). 2012: 3625-3632.
  • 19. Bessedik SA, Hadi H. Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation. Electric Power Systems Research. 2013; 104:87-92. https://doi.org/10.1016/j.epsr.2013.06.013
  • 20. Bessedik SA, Djekidel R, Ameur A. Performance of different kernel functions for LS-SVM-Grey Wolf Optimiser to estimate flashover voltage of polluted insulators. IET Science, Measurement & Technology. 2018;12(6):739-745. https://doi.org/10.1049/iet-smt.2017.0486
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f0fefb4-4f3f-4318-bcba-674c9f3b3823
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.