PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the water absorption rate of wood impregnated with silicone-based chemicals using an artificial neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the water absorption rate of wood impregnated with silicone-based chemicals was predicted by an artificial neural network (ANN). For this purpose, spruce (Picea orientalis L.) and beech (Fagus orientalis L.) wood samples impregnated with five commercial silicone-based chemicals were tested. Wood specimens were impregnated with these chemicals in concentrations of 10% and 50%, and the water absorption rates of samples at different times (2, 4, 8, 24, 48, 72, 168 and 336 hours) were calculated. These results were then modeled by an ANN. Wood species, silicone-based chemical, concentration and time in water were used as the input variables, and water absorption rate as the output variable. The results show that an ANN can be used successfully for predicting the water absorption rate of wood impregnated with silicone-based chemicals.
Rocznik
Strony
55--69
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Karadeniz Technical University, Faculty of Forestry, Department of Forest Industry Engineering, Trabzon, Turkey
  • Department of Non-Forest Products, Eastern Karadeniz Forestry Research Institute, Trabzon, Turkey
  • Karadeniz Technical University, Faculty of Forestry, Department of Forest Industry Engineering, Trabzon, Turkey
autor
  • Karadeniz Technical University, Faculty of Forestry, Department of Forest Industry Engineering, Trabzon, Turkey
Bibliografia
  • Adamopoulos S., Karageorgos A., Rapti E., Birbilis D. [2016]: Predicting the properties of corrugated base papers using multiple linear regression and artificial neural networks. Drewno 59 [198]: 61-72. DOI: 10.12841/wood.1644-3985.144.13
  • Archer K., Cui F. [1997]: Evaluating the performance of preservative/water repellent emulsion systems. Document – the International Research Group on Wood Preservation (Sweden)
  • Donath S., Militz H., Mai C. [2006]: Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60 [1]: 40-46. DOI: 10.1515/HF.2006.008
  • Fernandes J., Kjellow A.W., Henriksen O. [2012]: Modeling and optimization of the supercritical wood impregnation process—Focus on pressure and temperature. The Journal of Supercritical Fluids 66: 307-314. DOI: 10.1016/j.supflu.2012.03.003
  • Gascón-Garrido P., Thévenon M.-F., Mainusch N., Militz H., Viöl W., Mai C. [2017]: Siloxane-treated and copper-plasma-coated wood: Resistance to the blue stain fungus Aureobasidium pullulans and the termite Reticulitermes flavipes. International Biodeterioration and Biodegradation 120: 84-90. DOI:10.1016/j.ibiod.2017.01.033
  • Gurgen S., Altin I., Ozkok M. [2018]: Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network. Ships and Offshore Structures 13 [5]: 459-465. DOI: 10.1080/17445302.2018.1425337
  • Haykin S. [1994]: Neural Network: A Comprehensive Foundation. Macmillan College, New York
  • Khan J., Wei J.S., Ringner M., Saal L.H., Ladanyi M., Westermann F., Berthold F., Schwab M., Antonescu C.R., Peterson C. [2001]: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7 [6]: 673-679. DOI:10.1038/89044
  • Kristjanpoller W., Minutolo M.C. [2015]: Gold price volatility: A forecasting approach using the Artificial Neural Network – GARCH model. Expert Systems with Applications 42 [20]: 7245-7251. DOI:10.1016/j.eswa.2015.04.058
  • Londhe V. [2017]: Brain MR Image Segmentation for Tumor Detection using Artificial Neural. Brain 6 [1]
  • Mai C., Militz H. [2004]: Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review. Wood Science and Technology 37 [5]: 339-348. DOI:10.1007/s00226-003-0205-5
  • Mazela B., Ratajczak I., Wichłacz-Szentner K., Hochmańska P. [2010]: Silicon compounds as additives improving alkyd-based wood coatings performance. 1st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France. IRGWP 10-40531
  • Nicholas D.D. [1982]: Wood deterioration and its prevention by preservative treatments: Degradation and Protection of Wood. Syracuse University Press.
  • Ozsahin S. [2013]: Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. European Journal of Wood and Wood Products 71 [6]: 769-777. DOI:10.1007/s00107-013-0737-9
  • Rosenthal M., Bues C.-T. [2010]: Longitudinal penetration of silicon dioxide nanosols in wood of Pinus sylvestris. European Journal of Wood and Wood Products 68 [3]: 363-366. DOI: 10.1007/s00107-010-0455-5
  • Santaniello F., Djupström L.B., Ranius T., Weslien J., Rudolphi J., Sonesson J. [2017]: Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes. Journal of Environmental Management 201: 37-44. DOI: 10.1016/j.jenvman.2017.06.026
  • Sébe G., Brook M.A. [2001]: Hydrophobization of wood surfaces: covalent grafting of silicone polymers. Wood Science and Technology 35 [3]: 269-282. DOI: 10.1007/s002260100091
  • Skiba M., Mrowczyńska M., Bazan-Krzywoszańska A. [2017]: Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra. Applied Energy 188: 356-366. DOI: 10.1016/j.apenergy.2016.12.006
  • Terziev N., Panov D., Temiz A., Palanti S., Feci E., Daniel G. [2009]: Laboratory and above ground exposure efficacy of silicon-boron treatments (IRG/WP 09 30510). The International Research Group on Wood Protection.
  • Tiryaki S., Aydın A. [2014]: An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials 62: 102-108. DOI: 10.1016/j.conbuildmat.2014.03.041
  • Tiryaki S., Malkocoğlu A., Özşahin S. [2016]: Artificial neural network modeling to predict optimum power consumption in wood machining. Drewno: prace naukowe, doniesienia, komunikaty 59: 109-125. DOI: 10.12841/wood.1644-3985.140.08
  • Tiryaki S., Özşahin Ş., Yıldırım İ. [2014]: Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods. International Journal of Adhesion and Adhesives 55 29-36. DOI: 10.1016/j.ijadhadh.2014.07.005
  • Tshabalala M.A., Gangstad J.E. [2003]: Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. Journal of Coatings Technology 75 [943]: 37-43. DOI:10.1007/BF02730098
  • Tsoumis G. [1991]: Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold New York.
  • Williams R.S., Feist W.C. [1999]: Water repellents and water-repellent preservatives for wood. Forest Products Laboratory General Technical Report FPL-GTR-109
  • List of standards
  • TS-2470:1976 Turkish Statistical Institute. Odunda Fiziksel ve Mekanik Deneyler için Numune Alma Metotları ve Genel Özellikleri, Ankara (in Turkish)
  • TS-2472:1976 Turkish Statistical Institute. Odunda Fiziksel ve Mekanik Deneyler için Birim Hacim Ağırlığı Tayini, Ankara (in Turkish)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f0ec8c3-4b7b-4d35-aba2-38e726a3af6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.