PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Decomposition Kinetics of Hexanitrohexaazaisowurtzitane/Ammonium Perchlorate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal decomposition kinetics of hexanitrohexaazaisowurtzitane/ ammonium perchlorate (HNIW/AP) have been investigated by thermogravimetrydifferential scanning calorimetry-mass spectrometry (TG-DSC-MS) simultaneous analysis. TG showed that there were three weight loss processes for the thermal decomposition of the HNIW/AP mixture. The first was ascribed mainly to the thermal decomposition of HNIW, while the second and third were assigned to that of AP. The presence of AP has little effect on the thermal decomposition process of the HNIW component. The apparent activation energy of the thermal decomposition of the HNIW component, calculated by the Kissinger method, was little changed compared to that of neat HNIW. The addition of HNIW to AP caused the onset and end temperatures of the thermal decomposition to be decreased and the decomposition process to be shortened. The high-temperature and lowtemperature decomposition processes of AP became blurred in the presence of HNIW, and this was supported by the MS results.
Rocznik
Strony
149--159
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
autor
  • State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, South Street 5, Zhongguancun, Haidian District, Beijing, 100081, China
Bibliografia
  • [1] Yang R.J., An H.M., Tan H.M., Combustion and Thermal Decomposition of HNIW and HTPB/HNIW Propellants with Additives, Combust. Flame, 2003, 135, 463-473.
  • [2] Rajic M., Suceska M., Study of Thermal Decomposition Kinetics of Lowtemperature Reaction of Ammonium Perchlorate by Isothermal TG, J. Therm. Anal. Calorim., 2001, 63, 375-386.
  • [3] Gogulya M.F., Makhov M.N., Dolgoborodov A.Y., Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives, Combust Explosion Shock Waves (Engl. Transl.), 2004, 40(4), 445-457.
  • [4] Naika N.H., Gorea G.M., Gandheb B.R., Sikder A.K., Studies on Thermal Decomposition Mechanism of CL-20 by Pyrolysis Gas Chromatography–Mass Spectrometry (Py-GC/MS), J. Hazard. Mater., 2008, 159, 630-635.
  • [5] Ding L., Zhao F.Q., Liu Z.R., Zhang L.Y., Heng S.Y., The Interaction Between the Components in NEPE Propellant Containing CL-20 (in Chinese), Chinese Journal of Explosives & Propellants, 2008, 31(2), 38-42.
  • [6] Bohn M.A., Thermal Ageing of Rocket Propellant Formulations Containing ε-HNIW (ε-CL20) Investigated by Heat Generation Rate and Mass Loss, Thermochim. Acta, 2003, 401, 27-41.
  • [7] Liu R., Zhou Z., Yin Y., Yang L., Zhang T., Dynamic Vacuum Stability Test Method and Investigation on Vacuum Thermal Decomposition of HMX and CL- 20, Thermochim. Acta, 2012, 537, 13-19.
  • [8] Patil D.G., Brill T.B., Thermal Decomposition of Energetic Materials 53. Kinetics and Mechanism of Thermolysis of Hexanitrohexazaisowurtzitane, Combust. Flame, 1991, 87, 145-151.
  • [9] Liu L., Li F., Tan L., Ming L., Yi Y., Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate, Propellants Explos. Pyrotech., 2004, 29(1), 34-38.
  • [10] Zhi J., Wang T., Li S., Zhao F., Liu Z., Yang C., Yang L., Liu S., Zhang G., Thermal Behavior of Ammonium Perchlorate and Metal Powders of Different Grades, J. Therm. Anal. Calorim., 2006, 85, 315-320.
  • [11] Liu Z.R., Thermal Analysis of Energetic Materials (in Chinese), National Defence Industry Press, Beijing, 2008, ISBN: 9787118059724.
  • [12] Ren Y.L., Cheng B.W., Zhang J.S., Jiang A.B., Fu W.L., Thermal Degradation Kinetics of N,N’-Di(diethoxythiophosphoryl)-1,4-phenylenediamine, Chem. Res. Chinese Universities, 2008, 24(5), 628-631.
  • [13] Jiang X.B., Guo X.Y., Ren H., Zhu Y.L., Jiao Q.J., Control of Particle Size and Shape of ε-HNIW in Drowning-out Crystallization, J. Chem. Eng. Jpn., 2012, 45(6), 380-386.
  • [14] Löbbecke S., Bohn M.A., Pfeil A., Krause H., Thermal Behavior and Stability of HNIW (CL-20), 29th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1998, 145.
  • [15] Singh G., Felix S.P., Soni P., Studies on Energetic Compounds: Part 31. Thermolysis and Kinetics of RDX and Some of its Plastic Bonded Explosives, Thermochim. Acta, 2005, 426, 131-139.
  • [16] Shen S., Wu B., The Thermal Decomposition of Ammonium Perchlorate (AP) Containing a Burning-rate Modifier, Thermochim. Acta, 1993, 223, 135-143.
  • [17] Jiao Q.J., Zhu Y.L., Huang H., Ren H, Thermal Decomposition of RDX/AP by TG–DSC–MS–FTIR, J. Therm. Anal. Calorim., 2014, 116, 1125-1131.
  • [18] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, 1702-1706.
  • [19] Ozawa T., Kinetic Analysis of Derivative Curves in Thermal Analysis, J. Therm. Anal. Calorim., 1970, 2, 301-324.
  • [20] Hu R.Z., Gao S.L., Zhao F.Q., Shi Q.Z., Zhang T.L., Zhang J.J., Thermal Analysis Kinetics (in Chinese), 2nd ed., Science Press, Beijing, 2008, ISBN: 7-03-00946-3/O.1511.
  • [21] MacCallum J.R., Tanner J., A Comparative Study of Some Methods of Assessing Kinetic Parameters from Thermogravimetric Analysis, Eur. Polym. J., 1970, 6, 907-917.
  • [22] Coats A.W., Redfern J.P., Kinetics Parameters from Thermaogravimetric Data, Nature, 1964, 201, 68-69.
  • [23] Šatava F., Šesták J., Computer Calculation of the Mechanism and Associated Kinetic Data Using a Non-isothermal Integral Method, J. Therm. Anal. Calorim., 1975, 8, 477-489.
  • [24] Agrawal R.K., A New Equation for Modeling Nonisothermal Reactions, J. Therm. Anal. Calorim., 1987, 32, 149-156.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f0a584f-d5ca-46e9-9bb1-5d1582976765
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.