PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reaction of plane waves from a rotating magneto-thermoelastic medium with two-temperature and initial stress under three theories

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model of the equations of generalized magneto-thermoelasticity in an isotropic elastic medium with two-temperature under the effect initial stress is established. The entire elastic medium is rotated with a uniform angular velocity. The formulation is applied under three theories of generalized thermoelasticity: Lord-Shulman, Green-Lindsay, as well as the coupled theory. The Harmonic function is used to obtain the exact expressions for the considered variables. Some particular cases are also discussed in the context of the problem. We introduce the equations of the velocity of p-wave, T-wave and SV-wave. The boundary conditions for mechanical and Maxwell’s stresses and thermal insulated or isothermal are applied to determine the reflection coefficients for p-wave, T-wave and SV-wave. Some new aspects are obtained of the reflection coefficients and displayed graphically and the new conclusions are presented. Comparisons are also made with the results predicted by different theories (CT, L-S, G-L) in the presence of rotation, initial stress, magnetic field, as well as, the two-temperature parameter on the reflection of generalized thermos-elastic waves.
Rocznik
Strony
217--232
Opis fizyczny
Bibliogr. 36 poz., 1 rys., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, Taif University, P.O. 888, Taif, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Taif University, P.O. 888, Taif, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Taif University, P.O. 888, Taif, Saudi Arabia
Bibliografia
  • [1] Hetnarski, R. B. and Ignaczak, J.: Generalized thermoelasticity, J. Thermal Stresses, 22, 451-476, 1999.
  • [2] Lord, H. W. and Shulman, Y.: A generalized dynamical theory of thermoelasticity, J. the Mechanics and Physics of Solids, 15, 299-309, 1967.
  • [3] Green, A. E. and Lindsay, K. A.: Thermoelasticity, J. Elasticity, 2, 1-7, 1972.
  • [4] Hetnarski, R. B. and Ignaczak, J.: Soliton-like waves in a low temperature non-linear thermo-elastic solid, Int. J. Eng. Sci., 34, 1767-1787, 1996.
  • [5] Singh, H. and Sharma, J. N.: Generalized thermoelastic waves in transversely isotropic media, J. the Acoustical Society of America, 85, 1407-1413, 1985.
  • [6] Singh, H. and Sharma, J. N.: Generalized thermoelastic waves in anisotropic media, J. the Acoustical Society of America, 77, 1046-1053, 1985.
  • [7] Sharma, J. N. and Sidhu, R. S.: On the propagation of plane harmonic waves in anisotropic generalized thermoelasticity, Int. J. Eng. Sci., 24, 1511-1516, 1986.
  • [8] Kumar, R., Garg, S. K. and Ahuja, S.: Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space, Latin American J. Solids and Struct., 10(6), 1081-1108, 2013.
  • [9] Achenbach, J. D.: Wave Propagation in Elastic Solids, North-Holland Pub. Co., New York, 1973.
  • [10] Norris, A. N.: Propagation of plane waves in a pre-stressed elastic media, J. the Acoustical Society of America, 74(5), 1642-1643, 1983.
  • [11] Selim M.M.: Reflection of plane waves at free of an initially stressed dissipative medium. World Academy of Sci., Eng. and Tech., 30, 120-127, 2008.
  • [12] Singh, B. and Arora, J.: Reflection of plane waves from a free surface of an initially stressed transversely isotropic dissipative medium, Appl. Math., 115-125, 2011.
  • [13] Singh B. and Arora J.: Reflection of plane waves from free surface of an initially stressed rotating orthotropic dissipative solid half space, Engineering, 4(3), 170-175, 2012.
  • [14] Biot, M. A.: Mechanics of incremental deformation, Wiley, New York, 1965.
  • [15] Ogden, R. W. and Sotirropoulos, D.: Reflection of plane waves from the boundary of a pre-stressed compressible elastic half-space, IMA J. Appl. Math., 61(1), 61-90, 1998.
  • [16] Dey, S. and Dutta, D.: Propagation and attenuation of seismic body waves in initially stressed dissipative medium, Acta Geophysica, 46(3), 351-366, 1998.
  • [17] Roychoudhuri, S. K. and Banerjee, S.: Magneto-thermoelastic interaction in an infinite viscoelastic cylinder of temperature-rate dependent material subjected to a periodic loading, Int. J. Eng. Sci., 36(5-6), 635-643, 1998.
  • [18] Sharma, M. D.: Effect of initial stress on reflection at the free surfaces of anisotropic elastic medium, J. Earth System Science, 116(6), 537-551, 2007.
  • [19] Kaur, R., Sharma, J. N.: Study of reflection and transmission of thermoelastic plane waves at liquid-solid interface, J. Int. Academy of Phys. Sci., 16(2), 109-116, 2012.
  • [20] Borejko, P.: Reflection and transmission coefficients for three-dimensional plane waves in elastic media, Wave Motion, 24(4), 371-393, 1996.
  • [21] Singh, B., Bala, K.: Reflection of P and SV waves from the free surface of a two-temperature thermoelastic solid half-space, J. Mech. of Materials and Struct., 7(2), 183-193, 2012.
  • [22] Singh, B., Reflection of thermo-viscoelastic waves from free surface in the presence of magnetic field, Proc. Nat. Acad. Sci. India, 72(A), II, 109-120, 2002.
  • [23] Abd-alla, A. N., Yahia, A. A. and Abo-Dahab, S.M.: On the reflection of the generalized magneto-thermo-viscoelastic plane waves. Chaos, Solitons Fractals, 16, 211-231, 2003.
  • [24] Abo-Dahab, S.M., Mohamed, R.A.: Influence of magnetic field and hydrostatic initial stress on reflection phenomena of P and SV waves from a generalized thermoelastic solid half-space. J. Vib. and Control, 16, 685-699, 2010.
  • [25] Abo-Dahab, S.M.: Reflection of P and SV waves from stress-free surface elastic half-space under influence of magnetic field and hydrostatic initial stress without energy dissipation. J. Vib. and Control, 17(14), 2213-2221, 2011.
  • [26] Singh, B., Yadav, A. K.: Reflection of plane waves in a rotating transversely isotropic magneto-thermoelastic solid half-space. J. Theor. and Appl. Mech., 24(3), 33-60, 2012.
  • [27] Schoenberg, M. and Censor, D.: Elastic waves in rotating media. Quarterly J. Mech. and Appl. Math., 31, 115-125, 1973.
  • [28] Clarke, N.S., Burdness, J.J.: Rayleigh waves on rotating surface. ASME J. Appl. Mech., 61, 724-726, 1994.
  • [29] Destrade, M.: Surface waves in rotating rhombic crystal. Proceeding of the Royal Society of London. Series A, 460, 653-665, 2004.
  • [30] Abo-Dahab, S.M. and Abbas, I. A.: LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity, Appl. Math. Model., 35, 3759-3768, 2011.
  • [31] Abo-Dahab, S.M., Singh, B.: Influences of magnetic field on wave propagation in generalized thermoelastic solid with diffusion. Arch. of Mech., 61(2), 121-136, 2009.
  • [32] Chand, D., Sharma, J. N. and Sud, S. P.: Transient generalized magnetothermoelastic waves in a rotating half space. Int. J. Eng. Sci., 28, 547-556, 1990.
  • [33] Othman, M. I. A., Song, Y. Q.: Reflection of magneto-thermoelasticity waves with two relaxation times and temperature dependent elastic moduli, Appl. Mathematical Modelling, 32(4), 483-500, 2008.
  • [34] Othman, M. I. A. and Song, Y. Q.: Reflection of magneto-thermoelastic waves from a rotating elastic half-space, Int. J. Eng. Science, 46(5), 459-474, 2008.
  • [35] Othman, M. I. A. and Song, Y. Q.: The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half space under three theories. Multidisciplinary Modeling in Materials and Structures, 5, 43-58, 2009.
  • [36] Chakraborty, N.: Reflection of plane elastic waves at a free surface under initial stress and temperature field, TEPE, 2(2), 47-54, 2013.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f09f6fd-79ba-4814-b210-532613af27a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.