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Abstract. We give a probabilistic version of Levinson’s inequality under Mercer’s assump-
tion of equal variances for the family of 3-convex functions at a point. We also show that this
is the largest family of continuous functions for which the inequality holds. New families of
exponentially convex functions and related results are derived from the obtained inequality.
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1. INTRODUCTION

In [5] Levinson proved the following inequality:

Theorem 1.1. If f : (0, 2c) → R satisfies f ′′′ ≥ 0 and pi, xi, yi, i = 1, 2, . . . , n, are
such that pi > 0,

∑n
i=1 pi = 1, 0 6 xi 6 c and

x1 + y1 = x2 + y2 = . . . = xn + yn = 2c, (1.1)

then the inequality

n∑

i=1

pif(xi)− f(x) 6
n∑

i=1

pif(yi)− f(y) (1.2)

holds, where x =
∑n

i=1 pixi and y =
∑n

i=1 piyi denote the weighted arithmetic means.

Numerous papers have been devoted to generalizations and extensions of Levin-
son’s result. Popoviciu showed in [10] that the assumptions on the differentiability
of f can be weakened and for Theorem 1.1 to hold it is enough to assume that f is
3-convex. In [4] Bullen gave another proof of Popoviciu’s result, as well as a converse
of the inequality (rescaled to a general interval [a, b]). Bullen’s result is the following.
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Theorem 1.2.

(i) If f : [a, b] → R is 3-convex and pi, xi, yi, i = 1, 2, . . . , n, are such that pi > 0,∑n
i=1 pi = 1, a 6 xi, yi 6 b, (1.1) holds (for some c ∈ [a, b]) and

max(x1, . . . , xn) ≤ min(y1, . . . , yn), (1.3)

then (1.2) holds.
(ii) If for a continuous function f inequality (1.2) holds for all n, all c ∈ [a, b], all

2n distinct points satisfying (1.1) and (1.3) and all weights pi > 0 such that∑n
i=1 pi = 1, then f is 3-convex.

The aforementioned generalizations of Levinson’s inequality assume that (1.1)
holds, i.e. that the distribution of the points xi is equal to the distribution of the points
yi reflected around the point c ∈ [a, b]. Mercer ([6]) made a significant improvement
by replacing this condition of symmetric distribution with the weaker one that the
variances of the two sequences are equal.

Theorem 1.3. If f : [a, b] → R satisfies f ′′′ ≥ 0 and pi, xi, yi, i = 1, 2, . . . , n, are
such that pi > 0,

∑n
i=1 pi = 1, a 6 xi, yi 6 b, (1.3) holds and

n∑

i=1

pi(xi − x)2 =
n∑

i=1

pi(yi − y)2, (1.4)

then (1.2) holds.

In [11] Witkowski extended this result in several ways. Firstly, he showed that
Levinson’s inequality can be stated in a more general setting with random variables.
Furthermore, he showed that it is enough to assume that f is 3-convex and that
the assumption (1.4) of equality of the variances can be weakened to inequality in
a certain direction. In the following, E(Z) and Var(Z) denote the expectation and
variance, respectively, of a random variable Z.

Theorem 1.4. Let I be an open interval of R (bounded or unbounded), f : I → R be
a 3-convex function and X,Y : (Ω, µ)→ I be two random variables satisfying

(i) E(X2), E(Y 2), E(f(X)), E(f(Y )), E(f ′(X)), E(f ′(Y )), E(Xf ′(X)), E(Y f ′(Y ))
are finite,

(ii) ess supX ≤ ess inf Y ,
(iii) f ′′+(ess supX) > 0 and Var(X) ≤ Var(Y ), or f ′′−(ess inf Y ) < 0 and Var(X) ≥

Var(Y ), or f ′′+(ess supX) < 0 < f ′′−(ess inf Y ).

Then
E(f(X))− f(E(X)) ≤ E(f(Y ))− f(E(Y )). (1.5)

Notice that when Var(X) = Var(Y ), then assumption (iii) of Theorem 1.4 is
automatically satisfied, and for discrete random variables assumption (i) is satisfied.
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Therefore, for discrete random variables X taking values xi with probabilities pi and
Y taking values yj with probabilities qj inequality (1.5) becomes

n∑

i=1

pif(xi)− f(x̄) ≤
m∑

j=1

qjf(yj)− f(ȳ), (1.6)

and it holds for every 3-convex function f if maxi xi ≤ minj yj , pi > 0 and qj > 0 are
such that

n∑

i=1

pi =

m∑

j=1

qj = 1 and
n∑

i=1

pi(x− x̄)2 =

m∑

j=1

qj(yj − ȳ)2, (1.7)

where x̄ =
∑n

i=1 pixi and ȳ =
∑m

j=1 qjyj . This result for n = m and pi = qi was
proven be Witkowski ([12]). Building on Witkowski’s ideas ([12]), Baloch, Pečarić
and Praljak ([3]) showed that, in this case, Levinson’s inequality holds for a larger
class of functions given in the following definition.

Definition 1.5. Let f : I → R and c ∈ I◦, where I is an arbitrary interval I
(open, closed or semi-open in either direction) in R and I◦ is its interior. We say
that f ∈ Kc

1(I) (resp. f ∈ Kc
2(I)) if there exists a constant A such that the function

F (x) = f(x)− A
2 x

2 is concave (resp. convex) on I∩(−∞, c] and convex (resp. concave)
on I ∩ [c,∞).

A function f ∈ Kc
1(I) is said to be 3-convex at point c and Kc

1(I) generalizes
3-convex functions in the following sense: a function is 3-convex on I if and only if it
is 3-convex at every c ∈ I◦. Baloch, Pečarić and Praljak ([3]) also proved the converse
of Levinson’s inequality for continuous functions.

Theorem 1.6.

(i) Let a < xi ≤ c ≤ yi < b, pi > 0 for i = 1, 2, . . . , n,
∑n

i=1 pi = 1 and (1.4) holds.
If f ∈ Kc

1((a, b)), then inequality (1.2) holds and if f ∈ Kc
2((a, b)), then (1.2)

holds with the reverse sign of inequality.
(ii) Let f : (a, b) → R be continuous and c ∈ (a, b). If inequality (1.2) (resp. the

reverse of (1.2)) holds for every n ∈ N and sequences pi, xi, yi, i = 1, . . . , n,
such that pi > 0,

∑n
i=1 pi = 1, a < xi ≤ c ≤ yi < b and (1.4) holds, then

f ∈ Kc
1((a, b)) (resp. f ∈ Kc

2((a, b))).

In Section 2 of this paper we will prove the probabilistic version (1.5) of Levinson’s
inequality for the class of 3-convex functions at a point, which will generalize the
results of Theorems 1.4 and 1.6 (i). We will also prove a converse stronger than
Theorem 1.6 (ii). In addition to being more general, the proofs of the results from
Section 2 will be significantly more elegant and intuitive than the rather technical
and convoluted proofs from [3]. In Section 3 we will give mean value type results.
In Section 4 we will give refinements of the results obtained in the second section
by constructing certain exponentially convex functions and applying methods from
[8]. The obtained results will generalize the results of Anwar and Pečarić given in [1]
and [2].
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2. MAIN RESULTS

Let us first recall the probabilistic version of Jensen’s inequality (see, for example,
[9, Theorem 2.3]).

Theorem 2.1. Let I be an interval in R, f : I → R a convex function and X : Ω→ I
a random variable such that E(X) and E(f(X)) are finite. Then

f(E(X)) ≤ E(f(X)).

If f is concave, then the inequality is reversed.

The following theorem is our main result and it represents a probabilistic version
of Levinson’s inequality under the assumption of equal variances.

Theorem 2.2. Let X,Y : Ω→ I be two random variables such that

Var(X) = Var(Y ) <∞ (2.1)

and that there exists c ∈ I◦ such that

ess supX ≤ c ≤ ess inf Y. (2.2)

Then for every f ∈ Kc
1(I) such that E(f(X)) and E(f(Y )) are finite, inequality (1.5)

holds.

Proof. Let F (x) = f(x) − A
2 x

2, where A is the constant from Definition 1.5. Since
F : I ∩ (−∞, c]→ R is concave, Jensen’s inequality implies

0 ≤ F (E(X))− E(F (X))

= f(E(X))− A

2
E2(X)− E(f(X)) +

A

2
E(X2)

= f(E(X))− E(f(X)) +
A

2
Var(X). (2.3)

Similarly, F : I ∩ [c,∞)→ R is convex, so

0 ≤ E(F (Y ))− F (E(Y ))

= E(f(Y ))− A

2
E(Y 2)− f(E(Y )) +

A

2
E2(Y )

= E(f(Y ))− f(E(Y ))− A

2
Var(Y ). (2.4)

Adding up (2.3) and (2.4) we obtain

0 =
A

2
(Var(Y )−Var(X)) ≤ E(f(Y ))− f(E(Y ))− [E(f(X))− f(E(X))],

which completes the proof.
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Remark 2.3. It is obvious from the proof that Levinson’s inequality (1.5) holds if
the equality (2.1) is replaced by the weaker condition

A(Var(Y )−Var(X)) ≥ 0.

Since f ′′−(c) ≤ A ≤ f ′′+(c) (see [3]), if, additionally, f is convex (resp. concave), this
condition can be further weakened to Var(Y )−Var(X) ≥ 0 (resp. ≤ 0).

Corollary 2.4. If xi ∈ I∩(−∞, c], yj ∈ I∩ [c,∞), pi > 0 and qj > 0 for i = 1, . . . , n,
j = 1, . . . ,m, are such that (1.7) holds, then for every f ∈ Kc

1(I) inequality (1.6) holds.

Proof. Apply Theorem 2.2 to discrete random variables X taking values xi with
probabilities pi, i = 1, . . . , n, and Y taking values yj with probabilities qj ,
j = 1, . . . ,m.

Our next goal is to prove the converse of Theorem 2.2, i.e. to show that inequality
(1.5) characterizes the class Kc

1(I). In fact, we will show that it is enough to assume
that inequality (1.5) holds for a very special type of random variable to insure that f
belongs to Kc

1(I). If X is a random variable that takes values x1 and x2 with proba-
bilities 1

2 and Y is a random variable that takes values y1 and y2 with probabilities
1
2 , then (1.5) is equivalent to

f(x1) + f(x2)

2
− f

(
x1 + x2

2

)
≤ f(y1) + f(y2)

2
− f

(
y1 + y2

2

)
. (2.5)

For a function g and points u and v, u 6= v, let us introduce the notation

|u, v|g = [u, v,
u+ v

2
]g =

g(u)+g(v)
2 − g(u+v

2 )

( v−u
2 )2

.

Since Var(X) =
(
x2−x1

2

)2, one has

E(f(X))− f(E(X)) = Var(X)|x1, x2|f.

Therefore, if Var(X) = Var(Y ) (i.e. if |x2 − x1| = |y2 − y1|), then (2.5) is equivalent
to

|x1, x2|f ≤ |y1, y2|f. (2.6)

We will use the following lemma to prove our main result.

Lemma 2.5. Suppose that inequality (2.6) holds for all x1, x2 ≤ c ≤ y1, y2 such that
|y2 − y1| = α|x2 − x1|. Then (2.6) holds for all x1, x2 ≤ c ≤ y1, y2 and for all positive
rational µ such that |y2 − y1| = µα|x2 − x1|.
Proof. Without loss of generality we can assume y1 < y2. Assume first that µ = k ∈ N
is natural and denote d = α|x2 − x1|. Divide the interval [y1, y2] into 2k segments of
equal length. Denote by a0 = y1, a1, . . . , ak = y2 the even points of the division and by
b0, . . . , bk−1 the odd points (i.e. ai = y1 + id, bi = y1 + (i+ 1

2 )d). If [u, v] is a segment
of length dw centred at (y1 + y2)/2, then let us denote Sw = f(u)+f(v)

2 − f(y1+y2

2 ).
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The length of segments [ai, ai+1] and [bi, bi+1] equal d, so by the assumption of the
lemma |x1, x2|f ≤ |ai, ai+1|f and |x1, x2|f ≤ |bi, bi+1|f . Adding up these inequalities
one can get

k|x1, x2|f ≤
4

d2

k−1∑

i=0

(
f(ai) + f(ai+1)

2
− f(bi)

)
,

(k − 1)|x1, x2|f ≤
4

d2

k−2∑

i=0

(
f(bi) + f(bi+1)

2
− f(ai+1)

)
.

Adding up and simplifying we get

(2k − 1)|x1, x2|f ≤
4

d2

(
f(a0) + f(ak)

2
− f(b0) + f(bk−1)

2

)
=

4

d2
(Sk − Sk−1).

Repeating the same reasoning with segments [b0, bk−1] (of length bk−1−b0 = (k−1)d)
and [a1, ak−1] (of length ak−1 − a1 = (k − 2)d), and so on we get

(1 + 3 + . . .+ 2k − 1)|x1, x2|f ≤
4

d2
Sk

which is equivalent to

|x1, x2|f ≤
1

(kd
2 )2

(
f(y1) + f(y2)

2
− f

(
y1 + y2

2

))
= |y1, y2|f.

Now let µ = k/m. If [u, v] ⊂ [x1, x2] is a subsegment of length |x2 − x1|/m, then
|y2−y1| = kα|v−u|, so the previous part yields |u, v|f ≤ |y1, y2|f . Divide the segment
[x1, x2] into 2m equal parts and proceed as above to obtain the result.

Now we are ready to state and prove the main result.

Theorem 2.6. Let f : I → R be a continuous function. Suppose that for fixed c ∈ I◦
and all x1, x2 ∈ I∩(−∞, c], y1, y2 ∈ I∩ [c,∞) such that |x2−x1| = |y2−y1| inequality
(2.5) holds. Then f ∈ Kc

1(I).

Proof. Clearly, (2.5) is equivalent to (2.6). Choose arbitrary x1, x2 ∈ I ∩ (−∞, c],
y1, y2 ∈ I ∩ [c,∞) and choose rational sequences such that

x
(1)
i → x1, x

(2)
i → x2, y

(1)
i → y1, y

(2)
i → y2.

By Lemma 2.5, for every i ∈ N, we have |x(1)
i , x

(2)
i |f ≤ |y

(1)
i , y

(2)
i |f , and continuity of

f implies |x1, x2|f ≤ |y1, y2|f .
This means there exists a number A such that

sup
x1,x2∈I∩(−∞,c]

|x1, x2|f ≤
A

2
≤ inf

y1,y2∈I∩[c,∞)
|y1, y2|f.
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Notice that F (x) = f(x)−Ax2/2 satisfies |u, v|F = |u, v|f −A/2. Therefore,
sup

x1,x2∈I∩(−∞,c]

|x1, x2|F ≤ 0 ≤ inf
y1,y2∈I∩[c,∞)

|y1, y2|F

which implies that F is Jensen concave on I∩(−∞, c] and Jensen convex on I∩[c,∞).
Since the case of continuous function Jensen convexity (Jensen concavity) implies
convexity (concavity) (see [9]), this finishes the proof.

3. MEAN VALUE THEOREMS

Notice that Levinson’s inequality (1.5) is linear in f . This motivates us to define the
following linear functional: for fixed random variables X,Y : Ω → I and c ∈ I◦ such
that (2.1) and (2.2) hold, we define

Λ(f) = E(f(Y ))− f(E(Y ))− E(f(X)) + f(E(X)) (3.1)

for functions f : I → R such that E(f(X)) and E(f(Y )) are finite. Notice that
Theorem 2.2 guarantees that Λ(f) ≥ 0 for f ∈ Kc

1(I).
We will give two mean value results.

Theorem 3.1. Let −∞ < a < c < b < ∞, I = [a, b], X,Y : Ω → I be two
random variables such that (2.1) and (2.2) hold, and let Λ be given by (3.1). Then
for f ∈ C3([a, b]) there exists ξ ∈ [a, b] such that

Λ(f) =
f ′′′(ξ)

6

[
E(Y 3 −X3)− E3(Y ) + E3(X)

]
. (3.2)

Proof. Since f is bounded, E(f(X)) and E(f(Y )) are finite and Λ(f) is well de-
fined. Furthermore, since f ∈ C3([a, b]), there exist m = minx∈[a,b] f

′′′(x) and
M = maxx∈[a,b] f

′′′(x). The functions

f1(x) = f(x)− m

6
x3,

f2(x) =
M

6
x3 − f(x)

are 3-convex since f ′′′i (x) ≥ 0, i = 1, 2. Hence, by Theorem 2.2, we have Λ(fi) ≥ 0,
i = 1, 2, and we get

m

6
Λ(id3) ≤ Λ(f) ≤ M

6
Λ(id3), (3.3)

where id(x) = x. Since id3 is 3-convex, by Theorem 2.2, we have

0 ≤ Λ(id3) = E(Y 3 −X3)− E3(Y ) + E3(X).

If Λ(id3) = 0, then (3.3) implies Λ(f) = 0 and (3.2) holds for every ξ ∈ [a, b].
Otherwise, dividing (3.3) by 0 < Λ(id3)/6 we get

m ≤ 6Λ(f)

Λ(id3)
≤M,

so continuity of f ′′′ insures existence of ξ ∈ [a, b] satisfying (3.2).
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Theorem 3.2. Let I, c, X, Y and Λ be as in Theorem 3.1 and let f, g ∈ C3([a, b]).
If Λ(g) 6= 0, then there exists ξ ∈ [a, b] such that either

Λ(f)

Λ(g)
=
f ′′′(ξ)
g′′′(ξ)

,

or f ′′′(ξ) = g′′′(ξ) = 0.

Proof. Define h ∈ C3([a, b]) by h(x) = αf(x)−βg(x), where α = Λ(g), β = Λ(f). Due
to the linearity of Λ we have Λ(h) = 0. Now, by Theorem 3.1, there exist ξ, ξ1 ∈ [a, b]
such that

0 = Λ(h) =
h′′′(ξ)

6
Λ(id3),

0 6= Λ(g) =
g′′′(ξ1)

6
Λ(id3),

where id(x) = x. Therefore, Λ(id3) 6= 0 and

0 = h′′′(ξ) = αf ′′′(ξ)− βg′′′(ξ),

which gives the claim of the theorem.

Remark 3.3. Theorems 3.1 and 3.2 are generalizations of mean value results from [1].
Indeed, let I = [0, 2a], c = a be the midpoint of the segment and X be the discrete
random variable taking values xi ∈ [0, c] with probabilities pi, i = 1, . . . , n. The
random variables Y1 = 2a−X and Y2 = X + a satisfy Var(Y1) = Var(Y2) = Var(X).
The results from [1] can be recovered by applying Theorems 3.1 and 3.2 with the pair
of random variables X and Y1 or X and Y2.

4. EXPONENTIAL CONVEXITY

We will first give some basic definitions and results on exponential convexity that we
will use in this section.

Definition 4.1. A function g : I → R, where I is an interval in R, is n-exponentially
convex in the Jensen sense on I if

n∑

i,j=1

ξiξjg

(
xi + xj

2

)
≥ 0

holds for all choices ξi ∈ R and xi ∈ I, i = 1, . . . , n.
A function g : I → R is n-exponentially convex on I if it is n-exponentially convex

in the Jensen sense and continuous on I.

Remark 4.2. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact non-negative functions. Also, n-exponentially convex
functions in the Jensen sense are k-exponentially convex in the Jensen sense for every
k ≤ n, k ∈ N.
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Definition 4.3. A function g : I → R is exponentially convex in the Jensen sense on
I if it is n-exponentially convex in the Jensen sense on I for every n ∈ N. A function
g : I → R is exponentially convex on I if it is exponentially convex in the Jensen
sense and continuous on I.

Remark 4.4. A function g : I → R is log-convex in the Jensen sense, i.e.

g

(
x1 + x2

2

)2

≤ g(x1)g(x2), for all x1, x2 ∈ I, (4.1)

if and only if

ξ2
1g(x1) + 2ξ1ξ2g

(
x1 + x2

2

)
+ ξ2

2g(x2) ≥ 0

holds for every ξ1, ξ2 ∈ R and x1, x2 ∈ I, i.e., if and only if g is 2-exponentially convex
in the Jensen sense. If g(x1) = 0 for some x1 and [a, b] ⊂ I is an arbitrary interval
containing x1, then it follows from (4.1) and non-negativity of g (see Remark 4.2) that
g vanishes on [a1, b1], where a1 = (a+ x1)/2 and b1 = (x1 + b)/2. Applying the same
reasoning to intervals [a, a1] and [b1, b] we obtain sequences an ↘ a and bn ↗ b with
g vanishing on [an, bn]. Thus g is zero on (a, b) and a function that is 2-exponentially
convex in the Jensen sense is either identically equal to zero or it is strictly positive
and log-convex in the Jensen sense.

The following lemma is equivalent to the definition of convex functions (see [9,
p. 2]).

Lemma 4.5. A function g : I → R is convex if and only if the inequality

(x3 − x2)g(x1) + (x1 − x3)g(x2) + (x2 − x1)g(x3) ≥ 0

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

We will also need the following result (see [9, p. 2]).

Lemma 4.6. If g is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2,
x1 6= x2 and y1 6= y2, then the following inequality holds

g(x2)− g(x1)

x2 − x1
≤ g(y2)− g(y1)

y2 − y1
. (4.2)

If the function g is concave then the sign of the above inequality is reversed.

The following results will enable us to construct exponentially convex functions.

Theorem 4.7. Let X,Y : Ω → I be two random variables and c ∈ I◦ such that
(2.1) and (2.2) hold and let Λ be given by (3.1). Furthermore, let Υ = {ft : I → R
| t ∈ J}, where J is an interval in R, be a family of functions such that, for every
t ∈ J , E(ft(X)) and E(ft(Y )) are finite and for every four mutually different points
u0, u1, u2, u3 ∈ I the mapping t 7→ [u0, u1, u2, u3]ft is n-exponentially convex. Then
the mapping t 7→ Λ(ft) is n-exponentially convex in the Jensen sense on J . If the
mapping t 7→ Λ(ft) is continuous on J , then it is n-exponentially convex on J .
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Proof. For ξi ∈ R and ti ∈ J , i = 1, . . . , n, we define the function

f(x) =
n∑

i,j=1

ξiξjf ti+tj
2

(x).

Due to linearity of the divided differences and the assumption that the function
t 7→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen sense we have

[u0, u1, u2, u3]f =

n∑

i,j=1

ξiξj [u0, u1, u2, u3]f ti+tj
2

≥ 0.

This implies that f is 3-convex, so f ∈ Kc
1(I). Due to linearity of the expectation,

E(f(X)) and E(f(Y )) are finite, so by Theorem 2.2

0 ≤ Λ(f) =
n∑

i,j=1

ξiξjΛ(f ti+tj
2

).

Therefore, the mapping t 7→ Λ(ft) is n-exponentially convex. If it is also continuous,
it is n-exponentially convex by definition.

If the assumptions of Theorem 4.7 hold for all n ∈ N, then we immediately get
the following corollary.

Corollary 4.8. Let X, Y , c and Λ be as in Theorem 4.7. Furthermore, let Υ = {ft :
I → R | t ∈ J}, where J is an interval in R, be a family of functions such that, for
every t ∈ J , E(ft(X)) and E(ft(Y )) are finite and for every four mutually different
points u0, u1, u2, u3 ∈ I the mapping t 7→ [u0, u1, u2, u3]ft is exponentially convex.
Then the mapping t 7→ Λ(ft) is exponentially convex in the Jensen sense on J . If the
mapping t 7→ Λ(ft) is continuous on J , then it is exponentially convex on J .

Corollary 4.9. Let X, Y , c and Λ be as in Theorem 4.7. Furthermore, let Υ = {ft :
I → R | t ∈ J}, where J is an interval in R, be a family of functions such that, for
every t ∈ J , E(ft(X)) and E(ft(Y )) are finite and for every four mutually different
points u0, u1, u2, u3 ∈ I the mapping t 7→ [u0, u1, u2, u3]ft is 2-exponentially convex in
the Jensen sense. Then the following statements hold:

(i) if the mapping t 7→ Λ(ft) is continuous on J , then for r, s, t ∈ J such that
r < s < t, we have

Λ(fs)
t−r ≤ Λ(fr)t−sΛ(ft)

s−r, (4.3)

(ii) if the mapping t 7→ Λ(ft) is strictly positive and differentiable on J , then for all
s, t, u, v ∈ J such that s ≤ u and t ≤ v we have

µs,t(Υ) ≤ µu,v(Υ),

where

µs,t(Υ) =





(
Λ(fs)
Λ(ft)

) 1
s−t

, s 6= t,

exp
(

d
ds (Λ(fs))

Λ(fs)

)
, s = t.

(4.4)
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Proof. (i) By Theorem 4.7, the mapping t 7→ Λ(ft) is 2-exponentially convex. Hence,
by Remark 4.4, this mapping is either identically equal to zero, in which case inequality
(4.3) holds trivially with zeros on both sides, or it is strictly positive and log-convex.
Therefore, for r, s, t ∈ J such that r < s < t Lemma 4.5 with g(t) = log Λ(ft) gives

(t− s) log Λ(fr) + (r − t) log Λ(fs) + (s− r) log Λ(ft) ≥ 0.

This is equivalent to inequality (4.3).
(ii) By (i), the mapping t 7→ Λ(ft) is log-convex on J , which means that the

function t 7→ log Λ(ft) is convex on J . Hence, by using Lemma 4.6 with s ≤ u, t ≤ v,
s 6= t, u 6= v, we obtain

log Λ(fs)− log Λ(ft)

s− t ≤ log Λ(fu)− log Λ(fv)

u− v ,

that is,
µs,t(Υ) ≤ µu,v(Υ).

Finally, the limiting cases s = t are u = v are obtained by applying the standard
continuity argument.

Consider now the family of functions

Υ1 = {ft : I → R | t ∈ R}, I ⊂ (0,∞),

defined by

ft(x) =





xt− t(t−1)
2 x2+t(t−2)x− (t−1)(t−2)

2

t(t−1)(t−2) , t 6= 0, 1, 2,
1
2 lnx, t = 0,

−x lnx, t = 1,
1
2x

2 lnx, t = 2.

(4.5)

The functions ft are 3-convex since f ′′′t (x) = xt−3 ≥ 0. Moreover, the function

f(x) =
n∑

i,j=1

ξiξjf ti+tj
2

(x)

satisfies

f ′′′(x) =
n∑

i,j=1

ξiξjf
′′′
ti+tj

2

(x) =

(
n∑

i=1

ξie
ti−3

2 ln x

)2

≥ 0,

so f is 3-convex. Therefore

0 ≤ [u0, u1, u2, u3]f =

n∑

i,j=1

ξiξj [u0, u1, u2, u3]f ti+tj
2

,

so the mapping t 7→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen sense.
As this holds for all n ∈ N, we see that the family Υ1 satisfies the assumptions of
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Corollary 4.8. For the remainder of this section we assume that E(ft(X)) and E(ft(Y ))
are finite for all ft given by (4.5). Hence, by Corollary 4.8, the mapping t 7→ Λ(ft)
is exponentially convex in the Jensen sense. It is straightforward to check that it is
also continuous, so the mapping t 7→ Λ(ft) is exponentially convex. An immediate
consequence of Corollary 4.9 (i) is the following result.

Corollary 4.10. Let I ⊂ (0,∞), c ∈ I◦, and let X,Y : Ω → I be two random
variables such that (2.1) and (2.2) hold. If E(Y t−Xt)−Et(Y ) +Et(X) 6= 0 for some
t ∈ R\{0, 1, 2}, then for all r, s, t ∈ R\{0, 1, 2} such that r < s < t we have

E(Y t −Xt)− Et(Y ) + Et(X)

t(t− 1)(t− 2)
≥
(
E(Y s −Xs)− Es(Y ) + Es(X)

s(s− 1)(s− 2)

) t−r
s−r

·
(
E(Y r −Xr)− Er(Y ) + Er(X)

r(r − 1)(r − 2)

) s−t
s−r

> 0. (4.6)

Applying Theorem 3.2 for the functions f = ft and g = fs given by (4.5) and
defined on a segment I = [a, b] ⊂ (0,∞), we conclude that there exist ξ ∈ I such that

ξ =

(
f ′′′s
f ′′′t

)−1(
Λ(fs)

Λ(ft)

)
=

(
Λ(fs)

Λ(ft)

) 1
s−t

, s 6= t.

Moreover, µs,t(Υ1) given by (4.4) for the family Υ1 can be calculated in the limiting
cases s→ t as well and equal

µs,t(Υ1) =





(
Λ(fs)
Λ(ft)

) 1
s−t

, s 6= t,

exp
(

2Λ(fsf0)
Λ(f0) − 3s2−6s+2

s(s−1)(s−2)

)
, s = t 6= 0, 1, 2,

exp
(

Λ(f2
0 )

Λ(f0) + 3
2

)
, s = t = 0,

exp
(

Λ(f0f1)
Λ(f1)

)
, s = t = 1,

exp
(

Λ(f0f2)
Λ(f2) − 3

2

)
, s = t = 2.

By Corollary 4.9 (ii), µs,t(Υ1) are monotone in parameters s and t.

Remark 4.11. By applying Corollary 4.8 to the family of functions Υ1 given by (4.5)
and the pair of discrete random variables X and Y1 or X and Y2 from Remark 3.3
we conclude that the mapping t 7→ [u0, u1, u2, u3]ft is exponentially convex which
generalizes the result from [2] where the log-convexity of the mapping was proven.
Also, the inequalities obtained in [2] can be recovered from Corollary 4.9 (i). Further-
more, µs,t(Υ1) applied for the same family of functions and random variables yield
the Cauchy means obtained in [1].
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