Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a research methodology that supplements known studies to solve the problem of a correct complementary analysis of vehicles with different drive units. This method can be used at the stage of selecting a car for specific tasks, as well as for in-service technical condition checks. A new method is proposed for analysing the impact of operating conditions on the mileage fuel consumption, unit fuel consumption and overall energy efficiency of vehicles. In the study, it was possible to determine the effect of changing the vehicle speed, road gradient angle and vehicle weight. Tests identifying fuel consumption and efficiency characteristics as a function of vehicle load were carried out using passenger cars with different drive designs. Carrying out tests under laboratory conditions on a chassis dynamometer bench enabled the precise determination of the change in operating conditions. The criteria adopted for the evaluation included fuel consumption and overall vehicle energy efficiency. The variable parameters included speed, vehicle weight, and the road gradient angle. The data for criteria calculation were acquired using a diagnostic tester with a functional parameter recording function. The application of the presented method enabled a comparison of the overall energy efficiency of two vehicles equipped with spark-ignition combustion engines, according to the criteria listed. The experiment showed that in a three-cylinder engine, unit fuel consumption is more sensitive to parameter changes under identical conditions (speed, vehicle weight, road gradient angle) than in a four-cylinder engine. To evaluate the drive units of the test vehicles, characteristics of changes in the overall energy efficiency were used as well. It was observed that in all testing variants, the value increased with increasing road gradient values, with the intensity of η increase not being constant. A car with a four-cylinder engine has a higher energy efficiency at low loads. The proposed methodology is relevant for evaluating vehicles with different drive systems (including hybrid) and adapting drive characteristics to the operating conditions. Partially the presented methodology can also be transferred to EV vehicles - in terms of energy efficiency.
Czasopismo
Rocznik
Tom
Strony
109--128
Opis fizyczny
Bibliogr. 42 poz., il., rys., tab., wykr.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
Bibliografia
- 1. Abediasl, H., Ansari, A., Hosseini, V., Koch, C. R., Shahbakhti, M. (2024). Real-time vehicular fuel consumption estimation using machine learning and on-board diagnostics data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238 (12), 3779-3793. https://doi.org/10.1177/09544070231185609.
- 2. Berjoza, D, Jurgena I, & Millers R. (2024). Effect of electric vehicle mass change on energy consumption and the range. Agronomy Research, 22. https://doi.org/10.15159/AR.24.052.
- 3. Cheah L W, Bandivadekar A P, Bodek K M, Kasseris E P, Heywood J B. (2009). The trade-off between automobile acceleration performance, weight, and fuel consumption. SAE International Journal of Fuels and Lubricants, 1(1), 771-777. https://doi.org/10.4271/2008-01-1524.
- 4. Chirinda G, Matope S. (2020). The lighter the better: Weight reduction in the automotive industry and its impact on fuel consumption and climate change. In Proceedings of the 2nd African international conference on industrial engineering and operations management; Harare, Zimbabwe, 20-22.
- 5. Del Pero F, Delogu M, Pierini M. (2017). The effect of light weighting in automotive LCA perspective: Estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles. Journal of Cleaner Production, 154, 566-577. https://doi.org/10.1016/j.jclepro.2017.04.013
- 6. Filipi Z S, Assanis D N. (2000). The effect of the stroke-to-bore ratio on combustion, heat transfer and efficiency of a homogeneous charge spark ignition engine of given displacement. International Journal of Engine Research, 1(2), 191-208. https://doi.org/10.1243/1468087001545137.
- 7. Fonseca Gonzalez N E, Casanova Kindelán J, Espinosa Zapata F. (2010). Influence of driving style on fuel consumption and emissions in diesel-powered passenger car. In Proceddings 18th International Symposium Transport and Air Pollution, Dübendorf, Suiza, 2010.
- 8. Fuć P, Merkisz J, Ziółkowski A. (2012). Wpływ masy ładunku na emisję CO2, nox i na zużycie paliwa pojazdu ciężarowego o masie całkowitej powyżej 12 000 kg, Postępy Nauki i Techniki, 41-53.
- 9. Giechaskiel B, Komnos D, & Fontaras G. (2021). Impacts of extreme ambient temperatures and road gradient on energy consumption and CO2 emissions of a euro 6d-temp gasoline vehicle. Energies, 14(19), 6195. https://doi.org/10.3390/en14196195.
- 10. Gillespie T D. (1992). Fundamentals of Vehicle Dynamics. SAE Technical Paper, 114. https://doi.org/10.4271/R-114.
- 11. Gkyrtis, K. (2024). Theoretical considerations from the modelling of the interaction between road design and fuel consumption on urban and suburban roadways. Modelling, 5(3), 737-751. https://doi.org/10.3390/modelling5030039.
- 12. He L, You Y, Zheng X, Zhang S, Li Z, Zhang Z, ... & Hao J. (2022). The impacts from cold start and road grade on real-world emissions and fuel consumption of gasoline, diesel and hybrid-electric light-duty passenger vehicles. Science of The Total Environment, 851, 158045. https://doi.org/10.1016/j.sci-totenv.2022.158045.
- 13. Heywood J B. (1988). Internal Combustion Engine Fundamentals, International Editions - Automotive Technology Series, McGraw-Hill Book Company.
- 14. Huo H, He K, Wang M, Yao Z. (2012). Vehicle technologies fuel-economy policies, and fuel-consumption rates of Chinese vehicles. Energy Policy, 43, 30-36. https://doi.org/10.1016/j.enpol.2011.09.064.
- 15. Ismadiyorov, A. A., Sotvoldiyev, O. U. (2021). Model of assessment of fuel consumption in car operation in city conditions. Academic research in educational sciences, 2 (11), https://doi.org/1013-1019. 0.24412/2181-1385-2021-11-1013-1019.
- 16. Koffler C, Rohde-Brandenburger K. (2010). On the calculation of fuel savings through lightweight design in automotive life cycle assessments. The International Journal of Life Cycle Assessment, 15, 128-135. https://doi.org/10.1007/s11367-009-0127-z
- 17. Kropiwnicki J. (2011). Ocena efektywności energetycznej pojazdów samochodowych z silnikami spalinowymi. Monografie, 110.
- 18. Kuo Y, Wang C. (2011). Optimizing the VRP by minimizing fuel consumption, Management of Environmental Quality, 22 (4), 440-450. https://doi.org/10.1108/14777831111136054 19. Lee M G, Park Y K, Jung K K, Yoo J J. (2011). Estimation of fuel consumption using in-vehicle parameters. International Journal of u-and e-Service, Science and Technology, 4(4), 37-46.
- 20. Mitschke M. (1977). Teoria samochodu. Dynamika samochodu (Automobile theory. Dynamics of motor vehicles). WKŁ Warszawa: 85-88.
- 21. Mrozik M, Merkisz-Guranowska A. (2024). Modeling of material and energy inputs in the life cycle of a vehicle. Archives of Transport, 70(2), 117-136. https://doi.org/10.61089/aot2024.vzsv6b46. 22. Mysłowski J. (2014). Zużycie paliwa europejskich samochodów osobowych. Autobusy: technika, eksploatacja, systemy transportowe, 15(6), 195-198.
- 23. Pavlovic J, Fontaras G, Broekaert S, Ciuffo B, Ktistakis M A, Grigoratos T. (2021). How accurately can we measure vehicle fuel consumption in real world operation?. Transportation Research Part D: Transport and Environment, 90, 102666. https://doi.org/10.1016/j.trd.2020.102666.
- 24. Reynolds C, Kandlikar M. (2007). How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption. Environmental Research Letters, 2(1), 014003. https://doi.org/10.1088/1748-9326/2/1/014003.
- 25. Romero C A, Correa P, Ariza Echeverri E A, & Vergara D. (2024). Strategies for reducing automobile fuel consumption. Applied Sciences, 14(2), 910. https://doi.org/10.3390/app14020910.
- 26. Rosero F, Fonseca N, López J M, & Casanova J. (2021). Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses. Applied Energy, 282, 116195. https://doi.org/10.1016/j.apenergy.2020.116195.
- 27. Rymaniak Ł, Lijewski P, Kamińska M, Fuć P, Kurc B, Siedlecki M, Kalociński T, Jagielski A. (2020). The role of real power output from farm tractor engines in determining their environmental performance in actual operating conditions. Computers and Electronics in Agriculture, 173, 1-7. https://doi.org/10.1016/j.compag.2020.105405.
- 28. Saboohi Y, Farzaneh H. (2009). Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption. Applied Energy, 86(10), 1925-1932. https://doi.org/10.1016/j.apenergy.2008.12.017.
- 29. Šarkan B, Loman M, Synák F, Skrúcaný T, & Hanzl J. (2022). Emissions production by exhaust gases of a road vehicle’s starting depending on a road gradient. Sensors, 22(24), 9896. https://doi.org/10.3390/s22249896
- 30. Silva V, Vidal K, & Fontes T. (2024). Evaluating parcel delivery strategies in different terrain conditions. Transportation Research Part A: Policy and Practice, 187, 104158. https://doi.org/10.1016/j.tra.2024.104158.
- 31. Sprei F, Karlsson S, Holmberg J. (2008). Better performance or lower fuel consumption: Technological development in the Swedish new car fleet 1975-2002. Transportation Research Part D: Transport and Environment, 13(2), 75-85. https://doi.org/10.1016/j.trd.2007.11.003.
- 32. Subadra S P, Yousef S, Griskevicius P, & Makarevicius V. (2020). High-performance fiberglass/epoxy reinforced by functionalized CNTs for vehicle applications with less fuel consumption and greenhouse gas emissions. Polymer testing, 86, 106480. https://doi.org/10.1016/j.polymertesting.2020.10648.
- 33. Tao N Q, & Quang N T. (2024). Analysis of effect of rolling resistance coefficient on automobile fuel consumption. HaUI Journal of Science and Technology, 60(5), 216-218. http://doi.org/10.57001/huih5804.2024.185 34. Van den Brink R M, Van Wee B. (2001). Why has car-fleet specific fuel consumption not shown any decrease since 1990? Quantitative analysis of Dutch passenger car-fleet specific fuel consumption. Transportation Research Part D: Transport and Environment, 6(2), 75-93. https://doi.org/10.1016/S1361-9209(00)00014-6
- 35. Vrublevskyi O, Gonera J, Napiórkowski J. (2023). Precision diagnostics of a diesel engine under agricultural tractor operating conditions. Transport Problems Problemy Transportu, 18 (2), 181-194. https://doi.org/10.20858/tp.2023.18.2.16 36. Wang H, Fu L, Zhou Y, Li H. (2008). Modelling of the fuel consumption for passenger cars regarding driving characteristics. Transportation Research Part D: Transport and Environment, 13(7), 479-482. https://doi.org/10.1016/j.trd.2008.09.002.
- 37. Wang L, Kelly K, Walkowicz K, Duran A. (2015). Quantitative effects of vehicle parameters on fuel consumption for heavy-duty vehicle, SAE Technical Paper, 2773. https://doi.org/10.4271/2015-01-2773.
- 38. Weiss M, Cloos K C, & Helmers E. (2020). Energy efficiency trade-offs in small to large electric vehicles. Environmental Sciences Europe, 32, 1-17. https://doi.org/10.1186/s12302-020-00307-8.
- 39. Weiss M, Winbush T, Newman A, & Helmers E. (2024). Energy Consumption of Electric Vehicles in Europe. Preprints. https://doi.org/10.20944/preprints202406.1974.v1.
- 40. Yao Y, Zhao X, Liu C, Rong J, Zhang Y, Dong Z, Su Y. (2020). Vehicle fuel consumption prediction method based on driving behavior data collected from smartphones. Journal of Advanced Transportation, 1-11. https://doi.org/10.1155/2020/9263605.
- 41. Zeng W, Miwa T, Morikawa T. (2020). Eco-routing problem considering fuel consumption and probabilistic travel time budget. Transportation Research Part D: Transport and Environment, 78, 102219. https://doi.org/10.1016/j.trd.2019.102219.
- 42. Zhang J, Zhao Y, Xue W, Li J. (2015). Vehicle routing problem with fuel consumption and carbon emission. International Journal of Production Economics, 170, 234-242. https://doi.org/10.1016/j.ijpe.2015.09.031.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9efa97f3-f62a-4734-9c08-9d69083bd22d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.