Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper focused on the co-production of high-value-added product thermostable C-phycocyanin (C-PC) and biomass, further utilized in pyrolysis. The photobiosynthesis of CPC was carried out by the thermophilic cyanobacteria Synechococcus PCC6715 cultivated in the helical and flat panel photobioreactors (PBR). Despite the application of different inorganic carbon sources, both PBRs were characterized by the same growth efficiency and similar C-PC concentration in biomass. To release the intracellular C-PC the biomass was concentrated and disintegrated by the freeze-thaw method. The crude C-PC was then further purified by foam fractionation (FF), aqueous two-phase extraction (ATPE), membrane techniques (UF) and fast protein liquid chromatography (FPLC). Each of the tested methods can be used separately; however, from a practical and economic point of view, a three-stage purification system (FF, FPLC and UF) was proposed. The purity ratio of the final C-PC was about 3.9, which allows it to be classified as a reactive grade. To improve the profitability of 3G biorefinery, the solid biomass residue was used as a substrate to pyrolysis process, which leads to production of additional chemicals in the form of oils, gas (containing e.g. H 2) and biochar.
Rocznik
Tom
Strony
art. no. e59
Opis fizyczny
Bibliogr. 20 poz., il. tab.
Twórcy
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Bibliografia
- 1. Almeida P.V., Rodrigues R.P., Slezak R., Quina M.J., 2022. Effect of phenolic compound recovery from agro-industrial residues on the performance of pyrolysis process. Biomass Conv. Bioref., 12, 4257–4269. DOI: 10.1007/s13399-021-02292-1.
- 2. Antecka A., Klepacz-Smółka A., Szeląg R., Pietrzyk D., Ledakowicz S., 2022. Comparison of three methods for thermostable C–phycocyanin separation and purification. Chem. Eng. Process. Process Intensif., 171, 108563. DOI: 10.1016/j.cep.2021.108563.
- 3. Bennett A., Bogobad L., 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol., 58, 419–435. DOI: 10.1083/jcb.58.2.419.
- 4. Blatkiewicz M., Antecka A., Górak A., Ledakowicz S., 2017.
- 5. Laccase concentration by foam fractionation of Cerrena unicolor and Pleurotus sapidus culture supernatants. Chem. Process Eng., 38, 455–464. DOI: 10.1515/cpe-2017-0035.
- 6. Blatkiewicz M., Antecka A., Górak A., Ledakowicz S., 2018. Continuous laccase concentration in an aqueous two-phase system. Chem. Pap., 72, 555–566. DOI: 10.1007/s11696-017-0330-5.
- 7. Bridgwater A.V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 38, 68–94. DOI: 10.1016/J.BIOMBIOE.2011.01.048.
- 8. Cavelius P., Engelhart-Straub S., Mehlmer N., Lercher J., Awad D., Brück T., 2023. The potential of biofuels from first to fourth generation. PLoS Biol., 21, 3, e3002063. DOI: 10.1371/journal.pbio.3002063.
- 9. Gluszcz P., Klepacz-Smółka A., Ledakowicz S., 2018. Experimental evaluation of a helical laboratory photobioreactor for cultivation of thermophilic cyanobacteria – hydrodynamics and mass transfer studies. Chem. Process Eng., 39, 457–473. DOI: 10.24425/122963.
- 10. Jiang L., Wang Y., Yin Q., Liu G., Liu H., Huang Y., Li B., 2017. Phycocyanin: a potential drug for cancer treatment. J. Cancer, 8, 3416–3429. DOI: 10.7150/jca.21058.
- 11. Liang Y., Kaczmarek M.B., Kasprzak A.K., Tang J., Shah M.M.R., Jin P., Klepacz-Smółka A., Cheng J.J., Ledakowicz S., Daroch M., 2018. Thermosynechococcaceae as a source of thermostable C–phycocyanins: properties and molecular insights. Algal Res. 35, 223–235. DOI: 10.1016/j.algal.2018.08.037.
- 12. Liu L.-N., Chen X.-L., Zhang X.-Y., Zhang Y.-Z., Zhou B.-C., 2005. One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J. Biotechnol., 116, 91–100. DOI: 10.1016/j.jbiotec.2004.09.017.
- 13. Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K., 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J., 109, 282–296. DOI: 10.1016/j.bej.2016.01.025.
- 14. Matusiak M., Ślęzak R., Ledakowicz S., 2020. Thermogravimetric kinetics of selected energy crops pyrolysis. Energies, 13, 3977. DOI: 10.3390/en13153977.
- 15. Pais C., Franco-Duarte R., Sampaio P., Wildner J., Carolas A., Figueira D., Ferreira B.S., 2016. Chapter 9 – Production of dicarboxylic acid platform chemicals using yeasts: Focus on succinic acid, In: Poltronieri P., D’Urso F. (Eds.), Biotransformation of agricultural waste and by-products. Elsevier, 237–269. DOI: 10.1016/B978-0-12-803622-8.00009-4.
- 16. Rafa N., Ahmed S.F., Badruddin I.A., Mofijur M., Kamangar S., 2021. Strategies to produce cost-effective third-generation biofuel from microalgae. Front. Energy Res., 9, 749968. DOI: 10.3389/fenrg.2021.749968.
- 17. Ślęzak R., Nawrot P., Ledakowicz S., 2022. Pyrolysis of micro- and macroalgae in thermobalance coupled with mass spectrometer. Algal Res., 66, 102782. DOI: 1016/j.algal.2022.102782.
- 18. Sriariyanun M., Gundupalli M.P., Phakeenuya V., Phusamtisampan T., Cheng Y.S., Venkatachalam P., 2024. Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms. J. Appl. Sci. Eng., 27, 1985–2005. DOI: 10.6180/jase.202402_27(2).0001.
- 19. Velvizhi G., Balakumar K., Shetti N.P., Ahmad E., Kishore Pant K., Aminabhavi T.M., 2022. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy. Bioresour. Technol., 343, 126151. DOI: 1016/j.biortech.2021.126151.
- 20. Wu H.L., Wang G.H., Xiang W.Z., Li T., He H., 2016. Stability and antioxidant activity of food-grade phycocyanin isolated from spirulina platensis. Int. J. Food Prop., 19, 2349–2362. DOI: 10.1080/10942912.2015.1038564.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ef70f10-881e-457a-a90e-26eb449e4aa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.