PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct Energy Deposition of Mo Powder Prepared by Electrode Induction Melting Gas Atomization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. In this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited with scan speed of 600 mm/min has the hardness value of 324 Hv with a porosity of approximately 2%. We demonstrated that Mo layers with higher relative density and hardness can be formed with less effort through direct energy deposition compared to the conventional powder metallurgy.
Twórcy
autor
  • Hanyang University, Department of Materials Science and Engineering, Seoul 04763, Republic of Korea
  • Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Republic of Korea
autor
  • Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Republic of Korea
autor
  • University of Nevada, Department of Mechanical Engineering, Las Vegas, 4505 S. Maryland Pkwy Las Vegas, NV 89154, United States
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering Seoul 01811, Republic of Korea
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering Seoul 01811, Republic of Korea
Bibliografia
  • [1] A. Mancaleoni, A. Sitta, Al. Colombo, R. Villa, G. Mirone, M. Renna, M. Calabretta, Copper wire bonding process characterization and simulation, 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, VDE Verlag GmbH (2020).
  • [2] G. H. Oh, S. Kim, T. Kim, J. Alloys Compd., (2020), DOI:10.1016/j.jallcom.2020.157901 (in press).
  • [3] T. K. Chee, K. S. Theen, T. M. Sin, Cu-Cu wire bonding challenges on MOSFET wafer technology, 15th Electronics Packaging Technology Conference, Singapore, Singapore, VDE Verlag GmbH (2013).
  • [4] K. Mukai, T. Magaya, L. Brandt, Z. Liu, H. Fu, S. Hunegnaw, Adhesive enabling technology for directly plating copper onto glass, 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, IEEE (2014)
  • [5] B. He, J. Petzing, P. Webb, R. Leach, Opt. Lasers Eng. 75, 39-47 (2015).
  • [6] A. R. M. Yusoff, M. N. Syahrul, K. Henkel, Bull. Mater. Sci. 30, 329-331 (2007).
  • [7] L. Guo, W. Y. Zhang, Z. N. Xin, C. S. Yao, Int. J. Refract. Met. Hard Mater. 78, 45-50 (2019).
  • [8] X. Gao, L. Li, J. Liu, X. Wang, H. Yu, Int. J. Refract. Met. Hard Mater. 88, 105186 (2020).
  • [9] P. Alén, M. Ritala, K. Arstila, J. Keinonen, M. Leskelä, J. Electrochem. Soc. 152, G361 (2005).
  • [10] W. Li, X. Yan, A. G. Aberle, S. Venkataraj, Int. J. Photoenergy 2016, 1-10 (2016).
  • [11] P. S. Suryavanshi, C. J. Panchal, A. L. Patel, Mater. Today: Proc., (2020), DOI:10.1016/j.matpr.2020.07.706 (in press).
  • [12] C. Wongwanitwattal, M. Horprathum, C. Chananonnawathorn, AIP Conf. Proc. 2279, 120007 (2020).
  • [13] G. An, J. Sun, Y. Sun, W. Cao, Mater. Sci. Forum 913, 853-861 (2018).
  • [14] B. Bax, R. Rajput, R. Kellet, M. Reisacher, Addit. Manuf. 21, 487-494 (2018).
  • [15] D. R. Feenstra, A. Molotnikov, N. Birbilis, Mater. Des. 198, 109342 (2021).
  • [16] R. Ohser-Wiedemann, U. Martin, H. J. Seifert, A, Müller, Int. J. Refract. Met. Hard Mater. 28 (4), 550-557 (2010).
Uwagi
1. This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ef57e8d-6b00-4a67-a93b-b789cb230098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.