PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of start-up behaviour of a passive autocatalytic hydrogen recombiner

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heterogeneous catalytic recombination of hydrogen with oxygen is one of the methods used to remove hydrogen from the containment of a light-water nuclear reactor (LWR). Inside a passive autocatalytic recombiner (PAR), hydrogen and oxygen molecules are adsorbed at catalyst active spots and they recombine to yield water. Heat released in this exothermic reaction creates natural convection of gas in the spaces between the elements supporting a catalyst. Hot and humid gas fl ows upwards into the PAR chimney, while fresh, hydrogen-rich gas enters the PAR from below. Catalytic recombination should start spontaneously at room temperature and low hydrogen concentration. Computational fl uid dynamics (CFD) has been used to study the dynamic behaviour of a plate-type Areva FR-380 recombiner in a quiescent environment for several test scenarios, including different rates of increase in hydrogen concentration and temporary catalyst deactivation. A method for the determination of pressure boundary conditions at the PAR exits was proposed and implemented into a CFD code. In this way, transient operation of PAR could be simulated without the need to model gas circulation outside the device. It was found that fi rst a slow downward fl ow of gas is developed, which may persist until the temperature of the catalyst foils rises. As soon as the gas inside the PAR absorbs enough heat to become lighter than the gas outside the PAR, it starts to fl ow upwards. Criteria for determining the start-up time of PAR were proposed. Model predictions were also compared with experimental data obtained in tests conducted at the THAI facility.
Czasopismo
Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Faculty of Chemical and Process Engineering Warsaw University of Technology 1 Waryńskiego St., 00-645 Warsaw, Poland
Bibliografia
  • 1. International Atomic Energy Agency. (2011). Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna: IAEA. (IAEA-TECDOC-1661).
  • 2. Rigas, F., & Amyotte, P. (2013). Hydrogen safety. New York: CRC Press, Taylor & Francis Group.
  • 3. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-1 to HR-5, HR-27 and HR-28. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-1).
  • 4. Areva Inc. (2011). Passive autocatalytic recombiner. Retrieved June 2017, from http://us.areva.com/EN/home-1495/passive-autocatalytic-recombiner-par.html.
  • 5. Simon, B., Reinecke, E. -A., Kubelt, C., & Allelein, H. -J. (2014). Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study. Nucl. Eng. Des.,278, 317–322. DOI: 10.1016/j.nucengdes.2014.06.029.
  • 6. Liang, Z., Gardner, L., Clouther, T., & Thomas, B. (2016). Experimental study of effect of ambient flow condition on the performance of a passive autocatalytic recombiner. Nucl. Eng. Des., 301, 49–58. DOI:10.1016/j.nucengdes.2016.03.005.
  • 7. Bachellerie, E., Arnould, F., Auglaire, M., de Boeck, B., Braillard, O., Eckardt, B., Ferroni, F., & Moffet, R. (2003). Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151–165.
  • 8. Blanchat, T. K., & Malliakos, A. (1999). Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner. Nucl. Eng. Des., 187, 229–239.
  • 9. Reinecke, E. -A., Tragsdorf, I. M., & Gierling, K. (2004). Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nucl. Eng. Des., 230, 49–59. DOI: 10.1016/j.nucengdes.2003.10.009.
  • 10. Kelm, S., Schoppe, L., Dornseiffer, J., Hofmann, D., Reinecke, E. -A., Leistner, F., & Jühe, S. (2009). Ensuring the long-term functionality of passive auto-catalytic recombiners under operational containment atmosphere conditions – An interdisciplinary investigation. Nucl. Eng. Des., 239, 274–280. DOI: 10.1016/j.nucengdes.2008.10.029.
  • 11. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-14 to HR-16. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-4).
  • 12. Orszulik, M., Fic, A., & Bury, T. (2015). CFD modeling of passive autocatalytic recombiners. Nukleonika, 60, 347–353. DOI: 10.1515/nuka-2015-0050.
  • 13. Mimouni, S., Mechitoua, N., & Ouraou, M. (2011). CFD recombiner modelling and validation on the H2-PAR and Kali-H2 experiments. Sci. Technol. Nucl. Install., article ID 547514. DOI: 10.1155/2011/574514.
  • 14. Hoyes, J. R., & Ivings, M. J. (2016). CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance. Nucl. Eng. Des., 310, 142–153. DOI: 10.1016/j.nucengdes.2016.08.036.
  • 15. Kelm, S., Jahn, W., Reinecke, E. -A., & Allelein, H. -J. (2012). Passive auto-catalytic recombiner operation – validation of a CFD approach against OECD-THAI HR2 test. In Proceedings of OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety, 9–13 September 2012. Deajon, South Korea.
  • 16. Reinecke, E. -A., Kelm, S., Steffen, P. -M., Klauck, M., & Allelein, H. -J. (2016). Validation and application of the REKO-DIREKT code for the simulation of passive autocatalytic recombiners operational behaviour. Nucl.Technol., 196, 355–366. DOI: 10.13182/NT16-7.
  • 17. Rożeń, A. (2015). Modelling of a passive autocatalytic hydrogen recombiner – a parametric study. Nukleonika,60, 161–170. DOI: 10.1515/nuka-2015-0002.
  • 18. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
  • 19. The European Stainless Steel Development Association. (2007). Stainless steel: Tables of technical properties. Materials and Application Series, 5. Luxemburg: Euro Inox.
  • 20. Boehm, J. (2007). Modellierung der Prozesse in katalytischen Rekombinatoren. Schriften des Forschungszentrums Jülich, Reihe Energietechnik, Band 61.
  • 21. Monarch Instrument. (2003). Table of emissivity. Retrieved June 2017, from https://monarchinstrument.com/pages/library.
  • 22. Warnatz, J., Allendorf, M. D., Kee, R. J., & Coltrin, M. E. (1994). A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces. Combust. Flame, 96, 393–406.
  • 23. Schefer, R. W., Cheng, R. K., Robben, F. A., & Brown, N. J. (1978). Catalyzed combustion of H2/air mixtures on a heated platinum plate. In The Western States Section/The Combustion Institute, Spring Meeting, 17–18 April 1978 (Paper No. 78–33). Boulder, CO, USA.
  • 24. Idelchik, I. E. (2008). Handbook of hydraulic resistance. New York: Begell House, Inc.
  • 25. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts. In T. F. Irvine, J. P. Hartnett (Eds.), Advances in heat transfer. Suppl. 1. New York: Academic Press.
  • 26. Zhi-qing, W. (1982). Study on correction coefficients of laminar and turbulence entrance region effect in round pipe. Appl. Math. Mech., 3, 433–446.
  • 27. ANSYS, Inc. (2016). ANSYS Fluent Theory Guide. Release 17.2. Canonsburg: ANSYS, Inc. Retrieved June 2017, from https://pl.scribd.com/document/342817281/ANSYS-Fluent-Theory-Guide.
  • 28. Dimotakis, P. E. (2000). The mixing transition in turbulent flows. J. Fluid Mech., 409, 69–98
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ef38e0e-0262-4137-bd60-71451988a846
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.