PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussion on the Tensile and Bending Properties of PAN-based Pre-oxidised Fibre Felt Composite Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dyskusja na temat wytrzymałości na rozciąganie i zginanie kompozytów wytworzonych z udziałem filcu z włókien PAN poddanego wstępnemu utlenianiu
Języki publikacji
EN
Abstrakty
EN
The impact of the mass percentage of PAN-based pre-oxidised fibre felt in a composite material and of the curing temperature on the composite material’s mechanical properties were studied in order to optimise the preparation method of epoxy resin composite material. The results showed that when the dosage of PAN-based pre-oxidised fibre felt was 15% of the mass of epoxy resin and the curing temperature was 170 °C, the tensile and bending properties of the composite materials produced were the best. This study has addressed the absence of reports on this type of composite material, and is expected to lead to the development of applications for this new type of composite material.
PL
W celu zoptymalizowania metody przygotowania materiału kompozytowego z żywicy epoksydowej zbadano wpływ procentu masy wstępnie utlenionego filcu z włókien PAN w materiale kompozytowym i temperatury utwardzania na właściwości mechaniczne materiału kompozytowego. Wyniki pokazały, że najlepsze właściwości rozciągania i zginania wytwarzanych materiałów kompozytowych otrzymano dla 15% ilość wstępnie utlenionego filcu z włókien PAN w stosunku do masy żywicy epoksydowej, a optymalna temperatura utwardzania wynosiła 170 °C. Autorzy pracy oczekują, że przeprowadzone badanie doprowadzi w przyszłości do opracowania aplikacji dla nowego rodzaju materiału kompozytowego.
Rocznik
Strony
57--60
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Polytechnic University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Polytechnic University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
Bibliografia
  • 1. Lirong Tang, Senyang Zhuang, Biyun Hong, Zhenghan Cai, Yandan Chen, Biao Huang. Synthesis of Light Weight, High Strength Biomass-Derived Composite Aerogels with Low Thermal Conductivities. Cellulose 2019; 26, 16: 8699-8712.
  • 2. Hu Liu, Mengyao Dong, Wenju Huang, Jiachen Gao, Kun Dai, Jiang Guo, Guoqiang Zheng, Chuntai Liu, Changyu Shen, Zhanhu Guo. Lightweight Conductive Graphene/Thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing. Journal of Materials Chemistry C, 2017; 5, 1: 73-83.
  • 3. Yuanjun liu, Xiaoming Zhao, Xiao Tuo. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide/Graphite Three-Layer Composite Coating Knitted Fabrics. The Journal of The Textile Institute 2016; 107, 4: 483-492.
  • 4. Yuanjun liu, Xiaoming Zhao, Xiao Tuo. Study of Graphite/Silicon Carbide Coating of Plain Woven Fabric for Electrical Megawatt Absorbing Properties. The Journal of The Textile Institute 2017; 108, 4: 483-488.
  • 5. Lifeng Zhang, Aboagye Alex, Kelkar Ajit, Chuilin Lai, Hao Fong. A Review: Carbon Nanofibers from Electrospun Polyacrylonitrile and their Applications. Journal of Materials Science 2014; 49, 2: 463-480.
  • 6. Yuanjun Liu, Yuanchen Liu, Xiaoming Zhao. The Influence Of Pyrrole Concentration On The Dielectric Properties Of Polypyrrole Composite Material. The Journal of The Textile Institute 2017; 108, 7: 1246-1249.
  • 7. Yuanjun Liu, Xiaoming Zhao. The Influence of Dopant Type and Dosage on the Dielectric Properties of Polyaniline/Nylon Composites. The Journal of The Textile Institute 2017; 108, 9: 1628-1633.
  • 8. Jiaqi Sheng, Ying Zhang, Lie Liu, Bin Quan, Ning Zhang, Guangbin Ji. Optimizing Electromagnetic Wave Absorption Performance: Design from Microscopic Bamboo Carbon Nanotubes To Macroscopic Patterns. Journal of Alloys and Compounds 2019; 809,UNSP 151866.
  • 9. Hiremath Nitilaksha, Mays Jimmy, Bhat Gajanan. Recent Developments in Carbon Fibers and Carbon Nanotube-Based Fibers: A Review. Polymer Reviews, 2017, 57, 2: 339-368.
  • 10. Buciuman, Catalin Marin, Hancu, Liana, Vilau, Cristian, Borzan, Cristina Stefana Miron. Research Regarding Design and Material for an Electrical Car Charger Shell. Materiale Plastice 2019; 56: 488-491.
  • 11. Chuanbing Ge, Yuanjun Liu, Xiaoming Qian, Xiaoming Zhao. A Study of the Mechanical Properties of Pre-Oxidized Fiber Felt/Epoxy Resin Composite Material. The Journal of The Textile Institute 2018; 109, 10: 1335-1340.
  • 12. Zhao X, Liu Y, Liang T. Influence of the Needle Number on the Heat Insulation Performance of Pre-oxidized Fibre Felts. FIBRES & TEXTILES in Eastern Europe 2018; 26, 3(129): 80-86. DOI: 10.5604/01.3001.0011.7307.
  • 13. Zargham Shamim, Bazgir Saeed, Katbab Ali Asghar, Rashidi Abosaeed. High-Quality Carbon Nanofiber-Based Chemically Preoxidized Electrospun Nanofiber. Fullerenes Nanotubes and Carbon Nanostructures 2015; 23, 12:1008-1017.
  • 14. Yuanjun Liu, Xulin Liu, Jianming Li, Tenglong Liang, Xiaoming Zhao. A Study Of The Heat Insulation Performance Of Pre-Oxidized Fiber Felts Of Silica Aerogel/Silicon Carbide Composite Coatings. The Journal of The Textile Institute 2019; 110, 9: 1293-1299.
  • 15. Jingjing Cao, Wenwu Zhao, Shuzhen Gao. Properties and Structure of in Situ Transformed PAN-Based Carbon Fibers. Materials 2018; 11, 6: 1017.
  • 16. Dongsheng Chen, Yan Wang, Yixin Zou. Production and Pre-Oxidation of the Activated Carbon Fibre Needle Felt Using in the Prevention and Control of Water Pollution. Desalination and Water Treatment 2018; 122: 211-214.
  • 17. Wei Ye, Qilong Sun, Guangyu Zhang. Effect of Heat Treatment Conditions on Properties of Carbon-Fiber-Based Electromagnetic-Wave-Absorbing Composites. Ceramics International 2019; 45, 4: 5093-5099.
  • 18. Zhao X, Liu Y, Liu G. Production of Carbon Fibre Bulked Yarns by the Airflow Dispersion Method. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 34-40. DOI: 10.5604/01.3001.0010.5366.
  • 19. Hanqing Yu, Zhijun Dong, Guanming Yuan, Ye Cong, Xuanke Li, Yongming Luo. Boron-Carbon Doped Silicon Carbide Fibers: Preparation and Property. Journal of Inorganic Materials 2019; 34, 5: 493-501.
  • 20. Huizhen Ke, Yonggui Li. A Series of Electrospun Fatty acid Ester/Polyacrylonitrile Phase Change Composite Nanofibers as Novel Form-Stable Phase Change Materials For Storage and Retrieval of Thermal Energy. Textile Research Journal 2017; 87, 19: 2314-2322.
  • 21. Zhe Gao, Gaoming Jiang, Pibo Ma. Preparation and Performance as PEM of Sulfonated Pre-Oxidized Nanofiber/SPEEK Composite Membrane. Fibers and Polymers 2017; 18, 6: 1025-1030.
  • 22. Yuanlin Ren, Yetong Gu, Qian Zeng, Yue Zhang. UV-Induced Surface Grafting Polymerization for Preparing Phosphorus-Containing Flame Retardant Polyacrylonitrile Fabric. European Polymer Journal 2017; 94: 1-10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ef36475-5171-45ce-a305-72e2c1814cc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.