Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Identyfikacja gleb zasolonych w strefie przybrzeżnej dystryktu Krishna, Andhra Pradesh, z wykorzystaniem danych teledetekcyjnych i technik uczenia maszynowego
Języki publikacji
Abstrakty
In agricultural soil analysis, the challenge of soil salinization in regions like Krishna District, Andhra Pradesh, profoundly impacts soil health, crop yield, and land usability, affecting approximately 77,598 hectares of land. To address this issue, three machine learning algorithms are compared for classifying salinity levels in the coastal area of Krishna district, Machilipatnam. This study utilizes Landsat-8 images from 2014 to 2021, correcting for cloud cover and creating a true-color composite. The study area is defined and visualized. Twelve indices, derived from Landsat imagery, are incorporated into the analysis. These indices, including spectral bands and mathematical expressions, are added as image bands. The median of these indices is calculated, and sample points representing both non-saline and saline areas are used for supervised machine learning. The data is divided into two sets: training and validation. The study evaluates Random Forest, Classification and Regression Trees, and Support Vector Machines for classifying soil salinity levels using these indices. The RF algorithm produced an accuracy of 92.1%, CART produced 91.3%, and SVM produced 86%. Results are displayed on the map, representing predicted salinity levels with distinct colors. Performance metrics are evaluated, and they assess algorithm performance. The research involved gives insights into the classification of soil salinity using machine learning, which could represent an efficient solution to the problem of soil salinization in Machilipatnam.
W rolniczej analizie gleby, wyzwanie zasolenia gleby w regionach takich jak dystrykt Krishna, Andhra Pradesh, głęboko wpływa na zdrowie gleby, plony i użyteczność gruntów, wpływając na około 77 598 hektarów ziemi. Aby rozwiązać tę kwestię, porównano trzy algorytmy uczenia maszynowego do klasyfikacji poziomów zasolenia w obszarze przybrzeżnym dystryktu Krishna, Machilipatnam. W badaniu wykorzystano obrazy Landsat-8 z lat 2014-2021, korygując je pod kątem zachmurzenia i tworząc kompozycję w prawdziwych kolorach. Obszar badań został zdefiniowany i zwizualizowany. Do analizy włączono dwanaście wskaźników pochodzących ze zdjęć Landsat. Wskaźniki te, w tym pasma widmowe i wyrażenia matematyczne, są dodawane jako pasma obrazu. Mediana tych wskaźników jest obliczana, a przykładowe punkty reprezentujące zarówno obszary niezasolone, jak i zasolone są wykorzystywane do nadzorowanego uczenia maszynowego. Dane są podzielone na dwa zestawy: treningowy i walidacyjny. W badaniu oceniono Random Forest, Classification and Regression Trees i Support Vector Machines pod kątem klasyfikacji poziomów zasolenia gleby przy użyciu tych wskaźników. Algorytm RF uzyskał dokładność 92,1%, CART 91,3%, a SVM 86%. Wyniki są wyświetlane na mapie, przedstawiając przewidywane poziomy zasolenia za pomocą różnych kolorów. Oceniane są wskaźniki wydajności i wydajność algorytmów. Przeprowadzone badania dają wgląd w klasyfikację zasolenia gleby przy użyciu uczenia maszynowego, co może stanowić skuteczne rozwiązanie problemu zasolenia gleby w Machilipatnam.
Rocznik
Tom
Strony
83--88
Opis fizyczny
Bibliogr. 34 poz., fot., tab., wykr.
Twórcy
autor
- V. R. Siddhartha Engineering College, Faculty of Department of Computer Science and Engineering, Vinobha Nagar, Ibrahimpatnam, India
- V. R. Siddhartha Engineering College, Faculty of Department of Computer Science and Engineering, Vinobha Nagar, Ibrahimpatnam, India
autor
- V. R. Siddhartha Engineering College, Faculty of Department of Computer Science and Engineering, Vinobha Nagar, Ibrahimpatnam, India
Bibliografia
- [1] Abbas A. et al.: Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth, Parts a/B/C 55–57, 2013, 43–52.
- [2] Aksoy S. et al.: Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data. Advances in Space Research 2022.
- [3] Asfaw E. et al.: Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia 17(3), 2018, 250–258.
- [4] Bharathi S. et al.: Rainfall Analysis For Drought Investigation In Krishna Zone Of Andhra Pradesh. Agricultural Science Digest 31(2), 2011, 150–52.
- [5] Cherlinka V.: Soil Salinization Causes & How to Prevent and Manage It. 2021 [https://eos.com/blog/soil-salinization/].
- [6] Chhabra R.: Classification of Salt-Affected Soils. Arid Land Research and Management 19(1), 2004, 61–79.
- [7] Chinchmalatpure A.: Reclamation and Management of Salt Affected Soils for Increasing Farm Productivity and Farmers’ Income. 2017 [https://krishi.icar.gov.in/jspui/bitstream/123456789/10792/1/Reclamation%20a nd%20Management.pdf].
- [8] CSSRI et al.: Indo-Dutch Network Project (IDNP): A Methodology for Identification of Water-logging and Soil Salinity Conditions Using Remote Sensing. 2002 [https://edepot.wur.nl/87639].
- [9] Douaoui A. et al.: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 134(1–2), 2006, 217–30.
- [10] Extent and distribution of salt affected soils in India – ICAR-CSSRI: Central Soil Salinity Research Institute, 2024 [https://cssri.res.in/extent-and-distributionof-salt-affected-soils-in-india/].
- [11] Fathizad H. et al.: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma 365, 2020, 114233.
- [12] Fathololoumi S. et al.: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Science of the Total Environment 721, 2020, 137703.
- [13] Gomes F. et al.: Velocidade de infiltração da água num plintossolo háplico de campo de murundu sob uma cronossequência de interferência antrópica. Revista Brasileira de Agricultura Irrigada 5(3), 2011, 245–253.
- [14] Hoa P. et al.: Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sensing 11(2), 2019, 128.
- [15] Hussain.: Present Scenario of Global Salt Affected Soils, Its Management and Importance of Salinity Research. International Research Journal of Biological Sciences 1–3, 2019, 1.
- [16] Jabbar M. et al.: Assessment of Soil Salinity Risk on the Agricultural Area in Basrah Province, Iraq: Using Remote Sensing and GIS Techniques. Journal of Earth Science 23(6), 2012, 881–891.
- [17] Kabiraj S. et al.: Automated delineation of salt-affected lands and their progress in coastal India using Google Earth Engine and machine learning techniques. Environmental Monitoring and Assessment 195(3), 2023.
- [18] Kabiraj S. et al.: Comparative assessment of satellite images spectral characteristics in identifying the different levels of soil salinization using machine learning techniques in Google Earth Engine. Earth Science Informatics 15(4), 2022, 2275–2288.
- [19] Khan N. et al.: Mapping Salt-affected Soils Using Remote Sensing Indicators-A Simple Approach with the Use of GIS IDRISI. 2001 [https://a-a-rs.org/proceeding/ACRS2001/Papers/AGS-05.pdf].
- [20] Krishna P.V. et al.: Health risk assessment of heavy metal accumulation in the food fish, Channa striata from Krishna river, Andhra Pradesh. International Journal of Fisheries and Aquatic Studies 9(2), 2021, 180–184.
- [21] Kumar N. et al.: Remote Sensing and Machine Learning for Identification of Salt-affected Soils. Studies in Big Data 2021, 267–287.
- [22] Kumar P. et al.: Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems 4, 2020.
- [23] Madhu T. et al.: Mapping and Analysis of Wasteland in Machilipatnam Mandal, Krishna District, Andhra Pradesh, India by Using Geographical Information System. International Journal of Advanced Remote Sensing and GIS 4(1), 2015, 1435–1448.
- [24] Mandal A.: Modern Tools and Techniques for Diagnosis and Prognosis of Salt Affected Soils and Poor-Quality Waters. Current Investigations in Agriculture and Current Research 2(5), 2018.
- [25] Ramana Murty M. V. et al.: Monitoring of Coastal Geo-Environment for Hazard Mitigation: A Case Study of Machilipatnam Region, Andhra Pradesh, India. American Journal of Geospatial Technology 1(2), 2023, 27–38.
- [26] Rani A. et al.: Identification of salt-affected soils using remote sensing data through random forest technique: a case study from India. Arabian Journal of Geosciences 15(5), 2022.
- [27] Rouse J. W. et al.: Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication 351, 1974, 309.
- [28] Scudiero E. et al.: Remote sensing is a viable tool for mapping soil salinity in agricultural lands. California Agriculture 71(4), 2017, 231–38.
- [29] Shankarnarayan K. A. et al.: Agroforestry in the arid zones of India. Agroforestry Systems 5(1), 1987, 69–88.
- [30] Venkateshwarlu P. D. et al.: Marine Magnetic Indication of a Possible Submerged Volcano off Machilipatnam in Bay of Bengal. Journal of Geological Society of India 39, 1992, 197–203.
- [31] Wang J. et al.: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 353, 2019, 172–187.
- [32] Wang J. et al.: Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sensing 13(2), 2021, 305.
- [33] Wu W. et al.: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degradation & Development 29(11), 2018, 4005–4014.
- [34] Zhu S. et al.: Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin, China. Science China Earth Sciences 55(3), 2012, 386–396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ee3635f-488b-4134-bce4-d100cd02dfed