PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the numerical simulation method for the strength analysis of long-term portal crane components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the strength analysis of the material from two elements of a portal crane operated for about 33 years was carried out. The assessment was based on modelling and numerical simulation results using the finite element method of the load of three-point bending specimens. The constitutive relationships of the materials in the form of true stress-strain relationships were defined based on data from the uniaxial tensile test of the appropriate specimens. The iterative fitting method of the experimental and numerical relationship and the method that considers triaxiality and the Lode parameter were used. The accuracy of the defined stress-strain relationships was verified by comparing the load curves determined experimentally and numerically. Numerical modelling and simulation of the load of three-point bending specimens allowed obtaining stress distributions before the crack tip and the values of fracture toughness – J-integral. The results of the numerically calculated J-integral are similar to the experimental results. The trends in the stress component distributions indicate a high level of fracture toughness of the tested materials, ensuring a ductile nature of subcritical crack growth. The proposed methodology can be applied to other steels of operated structures.
Twórcy
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Av. 1000-An. of Polish State 7, 25-314 Kielce, Poland
autor
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Department of Diagnostics of Materials Corrosion-Hydrogen Degradation, 5 Naukova St., Lviv 79060, Ukraine
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Av. 1000-An. of Polish State 7, 25-314 Kielce, Poland
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Department of Diagnostics of Materials Corrosion-Hydrogen Degradation, 5 Naukova St., Lviv 79060, Ukraine
Bibliografia
  • 1. Lesiuk G, Szata M, Bocian M. The mechanical properties and the microstructural degradation effect in an old low carbon steels after 100-years operating time. Archives of Civil and Mechanical Engineering. 2015; 15(4).
  • 2. Lepretre E, Chataigner S, Dieng L, Gaillet L, Cannard H. Numerical and experimental investigations of hot driven riveting process on old metal structures. Engineering Structures. 2016; 127: 583–93.
  • 3. Pustovyi VМ, Semenov PО, Nemchuk ОО, Hredil МІ, Nesterov ОА, Strelbitskyi VV. Degradation of steels of the reloading equipment operating beyond its designed service life. Mater Sci. 2022; 57(5): 640–8.
  • 4. Nykyforchyn HM, Tsyrul’nyk OT. Specific features of the in-service bulk degradation of structural steels under the action of corrosive media. Strength Mater. 2009; 41(6): 651–63.
  • 5. Zvirko O, Tsyrulnyk O, Lipiec S, Dzioba I. Evaluation of corrosion, mechanical properties and hydrogen embrittlement of casing pipe steels with different microstructure. Materials. 2021; 14(24): 1–17.
  • 6. Dobrzański J, Hernas A, Moskal G. Microstructural degradation in boiler steels: materials developments, properties and assessment. In: Oakey JE, editor. Power Plant Life Management and Performance Improvement. Woodhead Publishing; 2011. p. 222–71. (Woodhead Publishing Series in Energy).
  • 7. Zieliński A, Dobrzański J, Purzyńska H, Golański G. Changes in properties and microstructure of high-chromium 9–12%Cr steels due to long-term exposure at elevated temperature. Archives of Metallurgy and Materials. 2016.
  • 8. Major Z, Bodnár L, Merczel DB, Szép J, Lublóy É. Analysis of the heating of steel structures during fire load. Emerging Science Journal. 2024; 8(1): 1–16.
  • 9. Koo KY, Brownjohn JMW, List DI, Cole R. Structural health monitoring of the Tamar suspension bridge. Structural Control and Health Monitoring. 2013; 20(4): 609–25.
  • 10. Kulka J, Mantic M, Fedorko G, Molnar V. Analysis of crane track degradation due to operation. Engineering Failure Analysis. 2016; 59: 384–95.
  • 11. Hredil M, Krechkovska H, Student O, Tsyrulnyk O. Brittle fracture manifestation in gas pipeline steels after long-term operation. Procedia Structural Integrity. 2020; 28: 1204–11.
  • 12. Kossakowski PG. Mechanical properties of bridge steel from the late 19th century. Applied Sciences. 2021; 11(2): 478.
  • 13. Hrabovskyy R, Kryzhanivskyy Y, Tuts O, Mandruk O, Tyrlych V, Artym V, et al. Impact of long-term operation on reliability and durability of natural gas pipeline: Potential environmental consequences of accidents. Procedia Structural Integrity. 2024; 59: 112–9.
  • 14. Krechkovska HV, Voitovich AA, Dzyubyk AR, Kindratskyi BI, Lampitskyi OS, Bohun LI. Differences in structure and properties of the beam metal of the bridge structure. Mater Sci. 2024; 59(6): 720–6.
  • 15. Adamczak-Bugno A, Krampikowska A. The acoustic emission method implementation proposition to confirm the presence and assessment of reinforcement quality and strength of fiber–cement composites. Materials. 2020; 13(13): 2966.
  • 16. Grajçevci F, Mujaj A, Kryeziu D, Rrudhani G, Shkodrani N. Experimental and numerical research on the behavior of steel columns with circular hollow cross sections. Civil Engineering Journal. 2024; 10(5): 1577–88.
  • 17. Putra WT, Setiawan AF, Saputra A, Satyarno I, Pratama HY. Frictional axial resistance of clamped split pocket mechanism steel structural joint: An experimental study. Civil Engineering Journal. 2024; 10(9): 2870–87.
  • 18. James Raj JRD, Raja V, Srikanth D, Surendran H, Nickolas MM. Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Materials Today: Proceedings. 2021; 44.
  • 19. Khedmatgozar Dolati SS, Caluk N, Mehrabi A, Khedmatgozar Dolati SS. Non-destructive testing applications for steel bridges. Applied Sciences. 2021; 11: 9757.
  • 20. Zhou P, Zhou G, Zhu Z, He Z, Ding X, Tang C. A review of non-destructive damage detection methods for steel wire ropes. Applied Sciences. 2019; 9: 2771.
  • 21. Świt G, Dzioba I, Ulewicz M, Lipiec S, Adamczak-Bugno A, Krampikowska A. Experimental-numerical analysis of the fracture process in smooth and notched V specimens. Production Engineering Archives. 2023; 29(4): 444–51.
  • 22. Adamczak-Bugno A, Lipiec S, Vavruš M, Koteš P. Non-destructive methods and numerical analysis used for monitoring and analysis of fibre concrete deformations. Materials. 2022; 15(20): 7268.
  • 23. Kubit A, Macek W, Zielecki W, Szawara P, Kłonica M. Fracture surface topography parameters for S235JR steel adhesive joints after fatigue shear testing. Adv Sci Technol Res J. 2023; 17(5): 130–9.
  • 24. Kurpanik K, Sławski S, Machoczek T, Woźniak A, Duda S, Kciuk S. Assessment of the conveyor belt strength decrease due to the long term exploitation in harmful conditions. Adv Sci Technol Res J. 1 sierpień 2024; 18(4): 1–11.
  • 25. Dubyk Y, Seliverstova I, Bogdan A. Stress assessment of single mitered bend using approximate cylindrical shell solutions. Procedia Structural Integrity. 2019; 18: 630–8.
  • 26. Birnbaum P, Meza-García E, Landgraf P, Grund T, Lampke T, Kräusel V. Experimental and numerical assessment of the hot sheet formability of martensitic stainless steels. Journal of Manufacturing and Materials Processing. 2020; 4(4): 122.
  • 27. Tang L, Ince A, Zheng J. Numerical modeling of residual stresses and fatigue damage assessment of ultrasonic impact treated 304L stainless steel welded joints. Engineering Failure Analysis. 2020; 108: 104277.
  • 28. Yang F, Veljkovic M, Liu Y. Ductile damage model calibration for high-strength structural steels. Construction and Building Materials. 10 grudzień 2020; 263: 120632.
  • 29. Asadipoor M, Kadkhodapour J, Pourkamali Anaraki A, Sharifi SMH, Darabi ACh, Barnoush A. Experimental and numerical investigation of hydrogen embrittlement effect on microdamage evolution of advanced high-strength dual-phase steel. Met Mater Int. 2021; 27(7): 2276–91.
  • 30. Wciślik W, Lipiec S. Voids Development in metals: Numerical modelling. Materials. 2023; 16(14): 4998.
  • 31. Ivanytskyi YaL, Blikharskyi ZYa, Maksymenko OP, Panchenko OV, Blikharskyi YaZ. Development of the methodology for monitoring the technical state of bridge structures and establishment of safe operating period. Mater Sci. 2024; 59(6): 711–9.
  • 32. Lipiec S, Pała R, Dzioba I. Experimental-numerical analysis of the fracture process of Al-Al-Ti laminated composite. Engineering Failure Analysis. 2022; 141: 106715.
  • 33. Zvirko OI, Lipec S, Vengreniuk OI, Dzioba I. Evaluation of the stress-strain state at the crack tip in casing pipes based on numerical simulation. Mater Sci. 2023; 58(4): 460–5.
  • 34. Chen M, He S. Structural Strength Analysis and Stress Testing of Portal Crane based on Finite Element Method. J Phys: Conf Ser. 2022; 2366(1): 012003.
  • 35. Nemchuk OO, Nesterov OA. In-service brittle fracture resistance degradation of steel in a ship-to-shore portal crane. Strength Mater. 1 marzec 2020; 52(2): 275–80.
  • 36. Nemchuk O, Hredil M, Pustovoy V, Nesterov O. Role of in-service conditions in operational degradation of mechanical properties of portal cranes steel. Procedia Structural Integrity. 2019; 16: 245–51.
  • 37. Wierzbicki T, Bao Y, Lee YW, Bai Y. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences. 2005; 47(4): 719–43.
  • 38. Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity. 2008; 24(6): 1071–96.
  • 39. Neimitz A, Galkiewicz J, Lipiec S, Dzioba I. Estimation of the onset of crack growth in ductile materials. Materials. październik 2018; 11(10): 2026.
  • 40. Zvirko O, Dzioba I, Hredil M, Pała R, Oliynyk O, Furmańczyk P. Specimen size effect on the tensile properties of rolled steel of long-term-operated portal crane. Materials. styczeń 2023; 16(8): 3017.
  • 41. ASTM E8 / E8M-16ae1. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials [Internet]. West Conshohocken: ASTM International; 2016. Available from: www.astm.org.
  • 42. PN-EN ISO 6892-1:2020-05. PN-EN ISO 6892-1:2020-05, Metallic materials — Tensile testing — Part 1: Method of test at room temperature [Internet]. Geneva: International Organization for Standardization; 2019. Available from: www.astm.org.
  • 43. Anderson TL. Fracture Mechanics. Fundamentals and Applications. Third Edition. Taylor and Francis Group; 2005.
  • 44. Ramberg W, Osgood WR. Description of stress-strain curves by three parameters [Internet]. 1943. Available from: https://ntrs.nasa.gov/citations/19930081614.
  • 45. Dzioba I, Lipiec S, Pała R, Furmańczyk P. On characteristics of ferritic steel determined during the uniaxial tensile test: Experimental and numerical analysis. Materials. 2021; 14(4): 829.
  • 46. Depreński Ł, Seweryn A. Ductile fracture of notched aluminum alloy specimens under elevated temperature part 2– Numerical modelling and fracture criterion. Theoretical and Applied Fracture Mechanics. 2019; 102: 83–97.
  • 47. Dunand M, Mohr D. On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles. Journal of the Mechanics and Physics of Solids. 59(7): 1374–94.
  • 48. Tu S, Ren X, He J, Zhang Z. Stress–strain curves of metallic materials and post‐necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structure. 2020; 43(1): 3–19.
  • 49. Neimitz A, Gałkiewicz J, Dzioba I. Calibration of constitutive equations under conditions of large strains and stress triaxiality. Archives of Civil and Engineering Materials. 2018; 18: 1123–35.
  • 50. ABAQUS 6.12. ABAQUS/Standard User’s Manual, Version 6.12 [Internet]. Dassault Systèmes Simulia Corp; 2020. Available at: http://130.149.89.49:2080/v6.12/index.html
  • 51. Dzioba I, Lipiec S. Fracture Mechanisms of S355 Steel—Experimental Research, FEM Simulation and SEM Observation. Materials. January 2019; 12(23): 3959.
  • 52. Ritchie RO, Knott JF, Rice JR. On the relationship between critical tensile stress and fracture toughness in mild steel. Journal of the Mechanics and Physics of Solids. 1973; 21: 395–410.
  • 53. Neimitz A, Graba M, Gałkiewicz J. An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. Engineering Fracture Mechanics. 2007; 74(8): 1308–22.
  • 54. Fincato R, Yonezawa T, Tsutsumi S. Numerical modeling of cyclic softening/hardening behavior of carbon steels from low- to high-cycle fatigue regime. Archives of Civil and Mechanical Engineering. 2023; 23(3).
  • 55. Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences. 2004; 46(1): 81–98.
  • 56. Neimitz A, Dzioba I, Lipiec S. Calibration of constitutive equations for the stress level estimation in domains with large strains. Procedia Structural Integrity. 2018; 13: 862–7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ee1f7bc-b9a5-4c74-a011-a964cb54082c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.