PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stagnation point flow of Eyring Powell fluid in a vertical cylinder with heat transfer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an analysis is carried out to examine the effects of natural convection heat transfer for steady boundary layer flow of an Eyring Powell fluid flowing through a vertical circular cylinder. The governing partial differential equations along with the boundary conditions are reduced to dimensionless form by using the boundary layer approximation and applying suitable similarity transformations. The resulting nonlinear coupled system of ordinary differential equations subject to the appropriate boundary conditions is solved using the analytic technique homotopy analysis method (HAM). The effects of the physical parameters on the flow and heat transfer characteristics are presented. The behavior of skinfriction coefficient and Nusselt numbers are also studied for different parameters.
Rocznik
Strony
57--62
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, University of Balochistan, Quetta, Pakistan
autor
  • Department of Mathematics, University of Balochistan, Quetta, Pakistan
autor
  • Department of Mathematics, Quaid-i-Azam University 45320, Pakistan
autor
  • Department of Mathematics, University of Balochistan, Quetta, Pakistan
Bibliografia
  • [1] N. Bachok, A. Ishak, I. Pop, Mixed convection boundary layer flow over a permeable vertical flat plate embedded in an anisotropic porous medium, Mathematical Problems in Engineering 2010.
  • [2] S. Ahmad, N. M. Arifin, R. Nazar, I. Pop, Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity, International Journal of Thermal Sciences 48 (10) (2009) 1943–1948.
  • [3] C.-Y. Cheng, Natural convection heat transfer of nonnewtonian fluids in porous media from a vertical cone under mixed thermal boundary conditions, International Communications in Heat and Mass Transfer 36 (7) (2009) 693–697.
  • [4] A. Rashad, M. El-Hakiem, M. Abdou, Natural convection boundary layer of a non-newtonian fluid about a permeable vertical cone embedded in a porous medium saturated with a nanofluid, Computers & Mathematics with Applications 62 (8) (2011) 3140–3151.
  • [5] S. Nadeem, A. Rehman, M. E. Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical, slender cylinder, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems (2012) 1740349912453806.
  • [6] C.-L. Chang, Buoyancy and wall conduction effects on forced convection of micropolar fluid flow along a vertical slender hollow circular cylinder, International journal of heat and mass transfer 49 (25) (2006) 4932–4942.
  • [7] A. Rehman, S. Nadeem, Heat transfer analysis of the boundary layer flow over a vertical exponentially stretching cylinder, Global J. Sci. Fron. Res 13 (11) (2013) 73–85.
  • [8] A. Rehman, S. Nadeem, S. Iqbal, M. Y. Malik, M. Naseer, Nanoparticle effect over the boundary layer flow over an exponentially stretching cylinder, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems (2014) 1740349913517872.
  • [9] M. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience 4 (7) (2014) 869–873.
  • [10] C.-Y. Cheng, Natural convection boundary layer on a horizontal elliptical cylinder with constant heat flux and internal heat generation, International Communications in Heat and Mass Transfer 36 (10) (2009) 1025–1029.
  • [11] A. Rehman, S. Nadeem, Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder, Chinese Physics Letters 29 (12) (2012) 124701.
  • [12] M. Naseer, M. Y. Malik, S. Nadeem, A. Rehman, The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder, Alexandria engineering journal 53 (3) (2014) 747–750.
  • [13] J.-M. Buchlin, Natural and forced convective heat transfer on slender cylinders, Revue générale de Thermique 37 (8) (1998) 653–660.
  • [14] A. Mahdy, F. Hady, Effect of thermophoretic particle deposition in non-newtonian free convection flow over a vertical plate with magnetic field effect, Journal of Non-Newtonian Fluid Mechanics 161 (1) (2009) 37–41.
  • [15] M. Naseer, M. Malik, A. Rehman, Numerical study of convective heat transfer on the power law fluid over a vertical exponentially stretching cylinder, Applied and Computational Mathematics 4 (5) (2015) 346–350.
  • [16] A. Rehman, R. Bazai, S. Achakzai, S. Iqbal, M. Naseer, Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretched cylinder, Applied and Computational Mathematics 4 (6) (2015) 424–430.
  • [17] A. Rehman, G. Farooq, I. Ahmed, M. Naseer, M. Zulfiqar, Boundary layer stagnation-point flow of second grade fluid over an exponentially stretching sheet, American Journal of Applied Mathematics and Statistics 3 (6) (2015) 211–219.
  • [18] A. Rehman, S. Nadeem, M. Malik, Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium, Journal of Power Technologies 93 (2) (2013) 122–132.
  • [19] S. Nadeem, A. Rehman, Axisymmetric stagnation flow of a nanofluid in a moving cylinder, Computational mathematics and modeling 24 (2) (2013) 293–306.
  • [20] M. Yurusoy, A study of pressure distribution of a slider bearing lubricated with powell-eyring fluid., Turkish Journal of Engineering and Environmental Sciences 27 (5) (2003) 299–304.
  • [21] A. Ishak, R. Nazar, I. Pop, The effects of transpiration on the boundary layer flow and heat transfer over a vertical slender cylinder, International Journal of Non-Linear Mechanics 42 (8) (2007) 1010–1017.
  • [22] S. Nadeem, A. Rehman, K. Vajravelu, J. Lee, C. Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Mathematical Problems in Engineering 2012.
  • [23] A. Rehman, S. Nadeem, M. Malik, Boundary layer stagnationpoint flow of a third grade fluid over an exponentially stretching sheet, Brazilian Journal of Chemical Engineering 30 (3) (2013) 611–618.
  • [24] S. Liao, Beyond perturbation: introduction to the homotopy analysis method, CRC press, 2003.
  • [25] R. Ellahi, A. Zeeshan, K. Vafai, H. U. Rahman, Series solutions for magnetohydrodynamic flow of non-newtonian nanofluid and heat transfer in coaxial porous cylinder with slip conditions, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems (2011) 1740349911429759.
  • [26] S. J. Liao, An approximate solution technique which does not depend upon small parameters:a special example, International Journal of Non-Linear Mechanics 30 (3) (1995) 371–380.
  • [27] A. Alomari, M. Noorani, R. Nazar, On the homotopy analysis method for the exact solutions of helmholtz equation, Chaos, Solitons & Fractals 41 (4) (2009) 1873–1879.
  • [28] S. Nadeem, A. Rehman, C. Lee, J. Lee, Boundary layer flow of second grade fluid in a cylinder with heat transfer, Mathematical Problems in Engineering 2012.
  • [29] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Physics Letters A 360 (1) (2006) 109–113.
  • [30] A. Alomari, M. Noorani, R. Nazar, Explicit series solutions of some linear and nonlinear schrodinger equations via the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation 14 (4) (2009) 1196–1207.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ee11406-dfae-46f5-89a9-97e61ae9127d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.