PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing Organic Fertilizer Through Co-Composting Olive Mill Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study was to evaluate the potential of olive mill wastewater (OMW) as an organic fertilizer through co-composting with various agricultural by-products. OMW was mixed with agricultural by-products, including maize silage, sugar beet pulp, and sugarcane bagasse, in controlled proportions and conditions. The study was conducted at the National Institute of Agricultural Research in Rabat, Morocco. The composting process was monitored over time, focusing on the evolution of key physicochemical parameters and phenol content of each mixture. The results showed that the performance of the composts varied, with the mixture containing sugar beet pulp (SBPO) exhibiting the most promising results, followed by maize silage (MSO) and sugarcane bagasse (SBO). These results suggest that co-composting OMW with agricultural by-products can produce high-quality organic fertilizers, thus reducing the need for inorganic alternatives and providing a sustainable waste management solution in the olive oil industry. It highlights the potential for reducing phenols characteristic of OMW and promoting sustainable agricultural practices. The application of the composts to crops was not tested, highlighting the need for further research in this regard. Future investigations should focus on evaluating the long-term effects of OMW-derived composts on soil health and crop productivity. This study explored a combination of materials that, to the authors’ knowledge, has not been previously documented in scientific literature. The results underscore the importance of sustainable waste management practices and their potential role in improving soil fertility and reducing the environmental impact associated with olive oil production.
Twórcy
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, (LS3MN2E-CERNE2D), ENSAM, Mohammed V University in Rabat, Morocco
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, (LS3MN2E-CERNE2D), ENSAM, Mohammed V University in Rabat, Morocco
  • Environment and Conservation of Natural Resources, Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
  • Environment and Conservation of Natural Resources, Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
  • Environment and Conservation of Natural Resources, Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
autor
  • International Water Research Institute, Mohammed VI Polytechnic University, Benguerir, Morocco
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, (LS3MN2ECERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Morocco
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, (LS3MN2ECERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Morocco
Bibliografia
  • 1. Nozha, A. and Sayadi, S. 2006. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Management 26(10), 1099–1107. doi: 10.1016/j.wasman.2005.06.015.
  • 2. Asses, N., Farhat, A., Cherif, S., Hamdi, M., Bouallagui, H. 2018. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: process monitoring and agriculture value of the resulting composts. Process Safety and Environmental Protection 114, 25–35. doi: 10.1016/j.psep.2017.12.006.
  • 3. Baddi, G.A., Antonio, A.J., Gonzálvez, J., Cegarra, J., Hafidi, M. 2004. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration and Biodegradation 54(1), 39–44. doi: 10.1016/j.ibiod.2003.12.004.
  • 4. Baeta-Hall, L., Sàágua, M.C., Bartolomeu, M.L., Anselmo, A.M., Rosa, M.F. 2005. Bio-degradation of olive oil husks in composting aerated piles. Bioresource Technology 96(1), 69–78. doi: 10.1016/j.biortech.2003.06.007.
  • 5. Barje, F., Amir, S., Winterton, P., Pinelli, E., Merlina, G., Cegarra, J., Revel, J.C., Hafidi, M. 2008. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse. Journal of Hazardous Materials 154(1–3), 682–87. doi: 10.1016/j.jhazmat.2007.10.089.
  • 6. Bernal, M.P., F’aredes, C., Sbnchez-Monedero, M.A., Cegarra, J. 1998. Maturity and Stability Parameters of Composts Prepared with a Wide Range of Organic Wastes 63.
  • 7. Bower, C.A., Reitemeier, R.F., Fireman, M. 1952. Exchangeable Cation Analysis of Saline and Alkali Soils. Soil Science 73(4).
  • 8. Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A. 2006. Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochemistry 41(3), 616–23. doi: 10.1016/j. procbio.2005.08.007.
  • 9. Cegarra, J., Paredes, C., Roig, A., Bernal, M.P., Garcia, D. 1996. Use of Olive Mill Wastewater Compost for Crop Production.
  • 10. Chataut, G., Bhatta, B., Joshi, D., Subedi, K., Kafle, K. 2023. Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research 11.
  • 11. Chen, W., Geng, Y., Hong, J., Yang, D., Ma, X. 2018. Life cycle assessment of potash fertilizer production in China. Resources, Conservation and Recycling 138, 238–45. doi: 10.1016/j.resconrec.2018.07.028.
  • 12. Chowdhury, A.K.M.M.B., Konstantinou, F., Damati, A., Akratos, C.S., Vlastos, D., Tekerlekopoulou, A.G., Vayenas, D.V. 2015. Is physicochemical evaluation enough to characterize olive mill waste compost as soil amendment? The case of genotoxicity and cytotoxicity evaluation. Journal of Cleaner Production 93, 94–102. doi: 10.1016/j.jclepro.2015.01.029.
  • 13. Das, K.C. 2008. Co-Composting of alkaline tissue digester effluent with yard trimmings. Waste Management 28(10), 1785–90. doi: 10.1016/j.wasman.2007.08.027.
  • 14. Dinel, H., Schnitzer, M., Dumontet, S. 1996. Compost maturity: extractable lipids as indicators of organic matter stability. Compost Science and Utilization 4(2), 6–12. doi: 10.1080/1065657X.1996.10701824.
  • 15. Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L., Porceddu, P.R. 2012. Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality. International Biodeterioration and Biodegradation 67, 8–14. doi: 10.1016/j.ibiod.2011.11.009.
  • 16. Golueke, C. 1982. Principles of Biological Resource Recovery.
  • 17. Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., Mechichi, T. 2012. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of trametes versicolor inoculation on the compost maturity. Chemosphere 88(6), 677–82. doi: 10.1016/j.chemosphere.2012.03.053.
  • 18. Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., Ammar, E. 2009. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials 161(2–3), 1131–39. doi: 10.1016/j.jhazmat.2008.04.066.
  • 19. El Joumri, L., Labjar, N., Dalimi, M., Harti, S., Dhiba, D., El Messaoudi, N., Bonnefille, S., El Hajjaji, S. 2023. Life cycle assessment (LCA) in the olive oil Value Chain: A descriptive review. Environmental Development 45.
  • 20. EL Joumri, L., Labjar, N., El Hajjaji, S., Douaik, A., Benali, A., Halima, O.I., Dhiba, D., Zouahri, A. 2024. Can co-composted olive mill by-products be an environmentally conscious approach for enhancing soil fertility and plant growth? A review. Journal of Soil Science and Plant Nutrition. doi: 10.1007/s42729-024-01747-4.
  • 21. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G.. Manios, T., Kyriacou, A. 2006. Quality assessment of composts in the Greek market: The need for standards and quality assurance. Journal of Environmental Management 80(1), 58–65. doi: 10.1016/j.jenvman.2005.08.011.
  • 22. Manca, A., da Silva, M.R., Guerrini, I.A., Fernandes, D.M., Bôas, R.L.V., da Silva, L.C., da Fonseca, AC., Ruggiu, M.C., Cruz, C.V., Sivisaca, D.C.L., Mateus, C.M.D., Murgia, I., Grilli, E., Ganga, A., Capra G.F. 2020. Composted sewage sludge with sugarcane bagasse as a commercial substrate for eucalyptus urograndis seedling production. Journal of Cleaner Production 269. doi: 10.1016/j.jclepro.2020.122145.
  • 23. El Moudden, H., El Idrissi, Y., Belmaghraoui, W., Belhoussaine, O., El Guezzane, C., Bouayoun, T., Harhar, H., Tabyaoui, M. 2020. Olive mill wastewater polyphenol-based extract as a vegetable oil shelf life extending additive. Journal of Food Processing and Preservation 44(12). doi: 10.1111/jfpp.14990.
  • 24. Chowdhury, A.K.M.M.B., Akratos, C.S., Vayenas, D.V., Pavlou, S. 2013. Olive mill waste composting: A Review. International Biodeterioration and Biodegradation 85, 108–19.
  • 25. Mustin, Michel. 1987. Le Compost: Gestion de La Matière Organique.
  • 26. Nosheen, S., Ajmal, I., Song, Y. 2021. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability (Switzerland) 13(4), 1–20.
  • 27. Senesi, N. 1989. Composted Materials as Organic Fertilizers. The Science of the Total Environment.
  • 28. Olsen, S.R. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture.
  • 29. Paredes, C., Bernal, M.P., Cegarra, J., and Roig, A. 2002. Bio-Degradation of Olive Mill Wastewater Sludge by Its Co-Composting with Agricultural Wastes. Bioresource Technology.
  • 30. Paredes, C., Cegarra, J., Bernal, M.P., andRoig, A. 2005. Influence of olive mill wastewater in composting and impact of the compost on a swiss chard crop and soil properties 31, 305–12 in Environment International. Elsevier Ltd.
  • 31. Pavlidou, A., Anastasopoulou, E., Dassenakis, M., Hatzianestis, I., Paraskevopoulou, V., Simboura, N., Rousselaki, E., Drakopoulou, P. 2014. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: A case study in Greece. Science of the Total Environment 497–498, 38–49. doi: 10.1016/j.scitotenv.2014.07.088.
  • 32. Pelloux, P., Dabin, B., Fillmann, G., Gómez, P. 1971. Méthodes de Détermination Des Cations Échangeables et de La Capacité d’échange Dans Les Sols. Orstom.
  • 33. PRE/630/2011. 2011. Boletín Oficial Del Estado.
  • 34. Romero, C., Ramos, P., Costa, C., Márquez, M.C. 2013. Raw and digested municipal waste compost leachate as potential fertilizer: Comparison with a commercial fertilizer. Journal of Cleaner Production 59, 73–78. doi: 10.1016/j.jclepro.2013.06.044.
  • 35. Said-Pullicino, D., Erriquens, F.G., Gigliotti, G. 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98(9), 1822–31. doi: 10.1016/j.biortech.2006.06.018.
  • 36. Sánchez-Arias, V., Fernández, F.J., Villaseñor, J., Rodríguez, L. 2008. Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste. Bioresource Technology 99(14), 6346–53. doi: 10.1016/j.biortech.2007.12.013.
  • 37. Saviozzi, A. 1987. Compost maturity by water extract analysis. Compost: Production, Quality and Use 359–67.
  • 38. Shakoor, A., Gan, M.Q., Yin, H.X., Yang, W., He, F., Zuo, H.F., Ma, Y.H., Yang, S.Y. 2020. Influence of nitrogen fertilizer and straw returning on CH4 emission from a paddy field in Chao Lake Basin, China. Applied Ecology and Environmental Research 18(1), 1585–1600. doi: 10.15666/aeer/1801_15851600.
  • 39. Siles-Castellano, A.B., López, M.J., López-González, J.A., Suárez-Estrella, F., Jurado, M.M., EstrellaGonzález, M.J., Moreno, J. 2020. Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes. Journal of Cleaner Production 252. doi: 10.1016/j.jclepro.2019.119820.
  • 40. Nunes, O.C., Bastos, M.M.S.M., Queda, A.C.C., Lemos, L.T., Silva, M.E.F. 2013. Recovery of humiclike susbtances from low quality composts. Bioresource Technology 128:624–32. doi: 10.1016/j.biortech.2012.11.013.
  • 41. Silva, M.E.F., Lopes, A.R., Cunha-Queda, A.C., Nunes, O.C. 2016. Comparison of the bacterial composition of two commercial composts with different physicochemical, stability and maturity properties. Waste Management 50, 20–30. doi: 10.1016/j.wasman.2016.02.023.
  • 42. Sisouvanh, P. Trelo-Ges, V., Na Ayutthaya, I.S., Pierret, A., Nunan, N., Silvera, N., Xayyathip, K., Hartmann, C. 2021. Can organic amendments improve soil physical characteristics and increase maize performances in contrasting soil water regimes? Agriculture (Switzerland) 11(2), 1–18. doi: 10.3390/agriculture11020132.
  • 43. Tapia-Quirós, P., Montenegro-Landívar, M.F., Reig, M., Vecino, X., Alvarino, T., Cortina, J.L., Saurina, J., Granados, M. 2020. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 9(11):1–15. doi: 10.3390/antiox9111074.
  • 44. Tomati U. 1996. Olive-Mill Wastewater Bioremediation: Evolution of a Composting Process and Agronomie Value of the End Product. The Science of Composting.
  • 45. Tortajada, C., González-Gómez, F. 2022. Agricultural trade: Impacts on food security, groundwater and energy use. Current Opinion in Environmental Science and Health 27.
  • 46. Tortosa, G., Alburquerque, J.A., Ait-Baddi, G., Cegarra J. 2012. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (‘alperujo’). Journal of Cleaner Production 26, 48–55. doi: 10.1016/j.jclepro.2011.12.008.
  • 47. Védère, C., Lebrun, M., Honvault, N., Aubertin, M.L., Girardin, C., Garnier, P., Dignac, M.F., Houben, D., Rumpel, C. 2022. How Does Soil Water Status Influence the Fate of Soil Organic Matter? A Review of Processes across Scales. Earth-Science Reviews 234.
  • 48. Zmora-Nahum, S., Hadar, Y., Chen, Y. 2007. Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biology and Biochemistry 39(6), 1263–76. doi: 10.1016/j.soilbio.2006.12.017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9edbcb02-04af-4d98-b1b3-938862dd0e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.