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INTRODUCTION

Over the course of two decades, there was a 
remarkable 53% increase in the global production 
of primary crops from 2000 to 2019 (Tortajada 
and González-Gómez, 2022). As agricultural pro-
duction has grown, there has been an increase in 
the application of chemical fertilizers, resulting 
in the generation of nitrous oxide (N2O) from the 

application of synthetic fertilizer. Upon applying 
urea to soils, carbon dioxide (CO2) is released, 
which was originally fixed during the industrial 
manufacturing process (Chataut et al., 2023). 
Thus, agriculture makes a significant contribu-
tion, constituting roughly 10–14% of the total 
global greenhouse gas (GHG) emissions (Sha-
koor et al., 2020). Concerning phosphorus fertil-
izer, a considerable amount is annually extracted 
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for fertilizer production, but a noteworthy propor-
tion eventually makes its way into rivers, lakes, 
and oceans, resulting in eutrophication (Chataut 
et al., 2023). Regarding potassium fertilizer, 
potassium chloride (KCl) is the main source 
of potassium (K) used in agriculture. In China, 
the production of KCl results in the emission of 
0.19 kg CO2-eq.kg−1 of potassium oxide (K2O), 
which is equivalent to 0.11 kg CO2 eq.kg−1 of 
KCl (Chen et al., 2018). Chemical fertilizers are 
contributing to substantial environmental pollution 
by diminishing the water-retaining ability and fer-
tility of soil, elevating soil acidity, and reducing the 
microorganism population (Nosheen et al., 2021). 

In the context of agricultural practices, es-
sential types of amendments are employed to 
improve soil fertility and productivity. These 
include manure, compost, and biochar (Védère 
et al., 2022). Organic amendments, rich in or-
ganic matter (OM) and carbon, directly increase 
soil organic matter (SOM) concentrations and 
improve soil water contents. This enhancement 
in soil water is achieved through two main pro-
cesses: first, the amendments absorb and retain 
water, and second, they enhance soil structure 
and porosity, leading to better water infiltration 
and storage. These organic amendments offer a 
promising solution to elevate SOM levels and 
improve soil water dynamics, contributing to 
more resilient and productive agricultural sys-
tems (Sisouvanh et al., 2021). 

Another captivating opportunity arises in the 
valorization of organic waste, with a particular 
emphasis on the wastewater produced during ol-
ive oil extraction. Substituting inorganic fertilizers 
with organic amendments derived from olive mill 
wastes offers a promising and effective approach 
to mitigate the detrimental environmental impacts 
associated with olive oil production (El Joumri 
et al., 2023). Combining OMW with agricultural 
residues, and agricultural by-products, such as ol-
ive pomace, straw materials, or animal residues, 
can enhance composting. As a consequence, the 
end product acquires enrichment with essential 
nutrients and OM (Muktadirul Bari Chowdhury 
et al., 2013). In accordance with (Tapia-Quirós 
et al., 2020), the quantity of olive pomace and 
OMW produced from one ton of olives can vary 
based on the method utilized in the extraction of 
oil, typically resulting in approximately 400 kg of 
olive pomace and 1200 L of OMW. This waste-
water holds a range of both organic and inorganic 
compounds, with the main components being 

polyphenols, tannins, lipids, organic acids, sus-
pended solids, and nutrients. Insufficient manage-
ment of OMW can lead to the contamination of 
agricultural land, resulting in detrimental impacts 
on soil fertility and crop growth. Furthermore, the 
discharge of OMW not only affects the soil eco-
system but also has significant implications for 
the aquatic environment, as demonstrated by an 
investigation conducted by (Pavlidou et al., 2014) 
which revealed significant quantities of phenolic 
compounds and elevated levels of both ammo-
nium and inorganic phosphorus in small streams. 
These contaminants actively contribute to the de-
terioration of these aquatic environments, espe-
cially prominent during the olive oil production 
peak in November and December. After the peak 
season of the olive oil production, it takes over 
five months for the ecosystem to recover. 

The primary goal of this work was to explore 
the potential valorization of OMW and agricultur-
al by-products for their utilization as soil amend-
ments. On the basis of literature review analyzing 
69 mixtures derived from olive mill by-products 
(EL Joumri et al., 2024), this study explored a 
combination of materials that, to the best of au-
thors’ knowledge, has not been previously doc-
umented in scientific literature. Therefore, this 
research aimed to bridge this gap by exploring 
the properties and interactions of these mixtures, 
thus providing an innovative contribution to the 
field. The study involved monitoring of changes 
in phenolic content and various physicochemical 
parameters throughout the experimental process. 
By investigating the suitability of these materi-
als for soil amendment purposes, the study aimed 
to contribute to sustainable agricultural practices 
and enhance soil health. 

MATERIALS AND METHODS

Composting procedure

Three mixtures were developed using OMW 
combined with different air-dried agricultural 
by-products. Maize silage (MS), sugar beet pulp 
(SBP), and sugarcane bagasse (SB) were air-
dried and used as raw materials in combination 
with OMW for the process of co-composting. 
These dried agricultural by-products were coarse-
ly shredded, and soaked in OMW for 48 hours 
to reach saturation as the aim was to absorb the 
maximum amount of OMW for effective valori-
zation. The fraction used is (1:6.67) (w:v). The 
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excess OMW was set aside, as it was not used in 
the composting process. The three composts dis-
played different OMW holding capacities, with 
absorption rates of 50%, 50%, and 75%, respec-
tively, for agricultural by-products MS, SBP, and 
SB. The resultant products were laid in perforated 
plastic containers to allow aeration and stored at 
room temperature for a duration of 7 months. 
Manual agitation was performed consistently 
every week for the mixtures which ensured both 
homogenization and aeration. Additionally, they 
were moistened every 15 days to maintain the 
moisture level necessary for microbial activity 
and decomposition. To assess the physicochemi-
cal characteristics of both mixtures (agricultural 
by-products combined with OMW) and the in-
dividual agricultural by-products, representative 
samples of each type were subjected to drying 
in an oven at 60 °C, followed by grinding and 
sieving to achieve a particle size of 0.2 mm. The 
raw materials were individually analyzed before 
they were mixed together. Table 1 provides the 
physicochemical characteristics of agricultural 
by-products and OMW. Samples were collected 
at different time points (initial state after 48 hours 
of immersion in OMW, and at 7, 42, 70, 148, and 
207 days) to monitor the composting process. In 
this research, the initial materials in the mixtures 
were established by considering their wet weight, 
and they are as follows:
	• MSO: 23.08% maize silage + 76.92% OMW
	• SBPO: 23.08% sugar beet pulp + 76.92% 

OMW

	• SBO: 16.67% sugarcane bagasse + 83.33% 
OMW

Dataa of OMW on fresh weight basis; (K, 
Na, Ca, Mg expressed in mEq/L; TPC ex-
pressed in mg(GAE)/L).

Analytical methods

EC and pH measurements of the co-compos-
ted by-products were conducted in water sus-
pensions at dilution ratios of 1:10 and 1:5 (w/v), 
respectively. The OM was determined by heat-
ing the dry sample at 550 °C in a muffle furnace 
for 4 hours. OC was calculated through the as-
sessment of OM loss after ignition. Total nitro-
gen was determined using the Kjeldahl method. 
Following the 4-hour calcination at 500 °C, the 
resulting ashes were dissolved to analyze the 
concentrations of P, Na, K, Ca, and Mg. P was 
analyzed using the Olsen method (Olsen, 1954). 
The K and Na concentrations were determined 
using a flame photometer (Bower et al., 1952). 
Ca and Mg were measured using the method de-
scribed by (Pelloux et al., 1971). The total phe-
nolic content was determined using the Folin-Ci-
ocalteu method, as described by (El Moudden et 
al., 2020), with slight modifications: 1 mL of the 
sample solution was mixed with 2 mL of Folin-
Ciocalteu reagent diluted with distilled water at 
a 1:10 ratio. Then, 4 mL of Na2CO3 (7.5%, w/v) 
were added to the mixture. The absorbance at 765 

Table 1. Characteristics of the OMW, MS, SBP, and SB (dry weight basis)
Parameters Maize silage Sugar beet pulp Sugarcane bagasse Olive mill wastewater

pH 5.53 3.7 4.75 4.85a

EC (mS/cm) 7.4 1.84 1.31 13.66a

OM (%) 96.43 97.91 98.76 82.23

Ash (%) 3.17 1.82 1.12 17.77

OC (%) 55.93 56.79 57.29 47.69

TKN(%) 2.25 2.08 0.54 –

C/N 24.85 27.25 106.57 –

P (%) 0.20 0.05 0.042 –

K (%) 1.59 0.2 0.3 1.79a

Na (%) 0.11 0.13 0.03 0.05a

Ca (%) 0.32 0.36 0.04 20a

Mg (%) 0.34 0.36 0.12 100a

TPC (µg GAE/g DW) 1919.48 2255.69 1997.07 23.73a

Note: EC: electrical conductivity, OM: organic matter, TKN: total Kjeldahl nitrogen, P: phosphorus, K: potassium, 
Na: sodium, Ca: calcium, Mg: magnesium, TPC: total phenol content.
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nm was determined using a UV-Vis spectropho-
tometer. The solution was left to stand in the dark 
for 30 minutes.

RESULTS 

Table 2 illustrates the evolution in the physi-
cochemical characteristics during the compost-
ing of OMW and agricultural by-products mix-
ture. All the mixtures experienced a pH increase 
during composting. Throughout composting, the 
pH of the SBPO mixture displayed a continual 
rise, reaching its highest level by the end of the 
process, as shown in Figure 1. MSO and SBO 
exhibited a similar temporal evolution, with an 
initial increase in pH until day 42, followed by 
a decrease in pH at day 70, and a subsequent rise 
extending until the end of the process. 

The EC of the three mixtures decreased 
throughout the composting process. The initial 
concentrations of OM were approximately the 
same for the three mixtures. However, the SBPO 
compost showed a higher rate of OM degrada-
tion. SBO has the highest value of OM. The ash 
content of the three composts increased during 
composting. During composting, the TKN values 
showed an increase in all mixtures. The high-
est final TKN content (4.37%) was observed in 
the SBPO mixture. The MSO compost takes the 
second position, showing TKN values of 3.75%. 
This substantial increase is most probably a result 
of the loss of compost mass. At the end of the list 

is SBO, showing a value of 2.14%. Mixture SBO 
exhibited the least significant N increase 

In all three composts, the C/N ratio decreased 
substantially. It can be deduced that only the MSO 
and SBPO composts have achieved maturity, as 
their C/N ratios fall within the desired range. The 
C/N ratio of the SBO compost (24.93) is higher 
than the recommended range. The SBO mixture 
exhibited the least significant decrease in C/N ra-
tio, as illustrated in Figure 2.

During composting, an increase in P was ob-
served in the MSO, SBPO, and SBP mixtures. 
Throughout the composting process, the K, Na, Ca, 
and Mg content displayed irregular fluctuations, with 
both increases and decreases noted in all composts. 
Figure 3 shows that the phenols were completely de-
graded after 148 days of composting for MSO, and 
after 207 days for SBPO. However, there was no 
complete degradation of phenols for SBO; instead, 
SBO showed a significant decrease in phenol. 

DISCUSSION 

The pH increase observed in all the mixtures dur-
ing composting was confirmed by (Tomati, 1996). In 
the initial phase of the process, a substantial increase 
in microorganisms and biological reactions occurs, 
resulting in an elevation of pH levels. As time ad-
vances, the process induces the mineralization of 
peptides, amino acids, and proteins into ammonia, 
leading to a subsequent rise in pH (Senesi, 1989, 
Paredes et al., 2002, Baeta-Hall et al., 2005). 

Figure 1. Evolution of pH of composts over time
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Figure 2. Evolution of C/N ratio of composts over time

Figure 3. Evolution of TPC of composts over time

Table 2. Evolution of the main parameters during the composting process (dry weight basis)
Composting 
time (days) pH EC (mS/

cm)
OM 
(%)

Ash
(%)

OC 
(%)

TKN
(%) C/N P 

(%)
K 

(%)
Na 
(%)

Ca 
(%)

Mg 
(%)

TPC 
(µg GAE/g)

MSO

0
7
42
70
148
207

5.85
6.44
7.71
6.84
8.13
8.15

8.8
8.45
8.34
6.75
5.86
3.52

94.53
92.82
91.9
91.47
89.95

89

4.69
6.29
7.63
8.28
9.57
10.4

54.83
53.84
53.31
53.06
52.18
51.62

2.48
2.6
2.6

2.59
2.68
3.75

22.11
20.71
20.5

20.49
19.47
13.77

0.2
0.21
0.45
0.42
0.78
0.78

3.14
2.78
3.69
1.57
2.37
1.93

0.22
0.17
0.14
0.14
0.15
0.14

0.4
0.4
0.4
0.4
0.4
0.4

0.38
0.38
0.36
0.36
0.36
0.36

4912.59
3148.79
1876.38
1050.52

0
0

SBPO

0
7
42
70
148
207

4.43
5.05
5.05
5.65
6.73
8.41

5.01
4.65
4.24
4.15
3.93
3.18

95.86
94.34
90.63
90.84
90.38
88.31

3.51
4.67
8.31
8.69
9.34
10.89

55.6
54.72
52.57
52.69
52.42
51.22

2.49
2.72
2.61
2.52
2.77
4.37

22.33
20.12
20.14
20.91
18.92
11.72

0.09
0.12
0.18
0.19
0.24
0.25

1.84
1.65
1.68
1.35
1.83
1.8

0.18
0.15
0.13
0.2

0.18
0.14

0.4
0.4

0.56
0.6
0.6
0.6

0.46
0.46
0.46
0.46
0.46
0.46

4767.76
4233.28

3135
2160.86
267.76

0

SBO

0
7
42
70
148
207

4.9
4.94
5.5
4.5
5.88
7.01

5.3
4.93
3.95
3.78
2.84
2.28

96.89
96.2
95.67
95.48
95.44
91.99

2.5
2.95
3.87
4.36
4.44

6

56.2
55.8
55.49
55.38
55.36
53.36

1.18
1.37
1.34
1.41
1.53
2.14

47.63
40.73
41.41
39.28
36.18
24.93

0.11
0.13
0.14
0.15
0.15
0.15

2.32
2.07
1.79
1.09
1.36
1.41

0.07
0.06
0.06
0.13
0.1

0.12

0.16
0.16
0.16
0.12
0.12
0.12

0.22
0.22
0.22
0.22
0.22
0.22

4767.76
3878.1
2685

1917.76
814.31

385

Note: EC: electrical conductivity, OM: organic matter, TKN: total Kjeldahl nitrogen, P: phosphorus, K: potassium, 
Na: sodium, Ca: calcium, Mg: magnesium, TPC: total phenol content.
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The decline in pH observed on day 70 for 
MSO and SBO was similar to that reported in a 
study by (Paredes et al., 2005), where the com-
posts derived from sewage sludge, cotton gin 
waste, and OMW displayed a similar trend. This 
observation could be linked to the initiation of the 
nitrification process.

The elevated EC is attributed to the inclusion of 
OMWs in the initial mixture (Hachicha et al., 2009). 
A study on a compost based on maize straw and 
OMW reported that the EC also decreased through-
out the composting cycle (Paredes et al., 2002). 
Leaching during composting can result in a decrease 
in EC values due to the loss of soluble salts (Paredes 
et al., 2002, Abid and Sayadi, 2006, Said-Pullicino 
et al., 2007). Due to the high level of lignin, the resi-
dues exhibit a high OM and carbon content (Asses et 
al., 2018). Chowdhury et al. (2015) reported compa-
rable findings in their study of composts. The initial 
percentage of OM of their composts ranged from 
95.36% to 96.49%. By the end of composting, OM 
ranged from 88.10% to 89.0%. Regarding OC, the 
initial OC percentage in the four composts ranged 
from 55.31% to 55.96%. By the end of composting, 
the OC values varied within the range of 51.10% 
to 51.60% (Chowdhury et al., 2015). The SBO 
mixture showed ash content variations similar to 
the compost composed of OMW, solid olive mill 
waste, and household refuse (Barje et al., 2008). 
The MSO and SBPO mixtures, on the other hand, 
exhibited comparability to the compost studied by 
(Baddi et al., 2004), which included OMW, solid 
olive mill waste, and wheat straw.

Regarding TKN, The results of this study 
align with the outcomes documented in (Pare-
des et al., 2005, Chowdhury et al., 2015). This 
substantial increase is most probably a result of 
the loss of compost mass. The slight increase in 
nitrogen content observed in SBO could be attrib-
uted to its higher concentration of lignocellulosic 
materials. This finding aligns with previous stud-
ies by (Baddi et al., 2004, Tortosa et al., 2012, 
Siles-Castellano et al., 2020).

Compost maturity can be assumed when the 
C/N ratio falls below 20, as reported by (Golueke, 
1982; Hachicha et al., 2012). On the other hand, 
the addition of compost to the soil with a C/N ra-
tio not exceeding 15 is not likely to disrupt its mi-
crobiological balance (Bernal et al., 1998).

The slight increase in C/N observed in the SBO 
mixture is possibly attributed to its higher concentra-
tion of ligno-cellulosic materials. However, a simi-
lar result regarding the C/N ratio was observed in 

composts made from a mixture of olive husk (80%) 
and olive tree pruning (20%) where C/N decreased 
from 57.0 to 26.2 (Gigliotti et al., 2012).

The increase of P could be due to the biodegra-
dation of OM present in these mixtures, which may 
release the incorporated P from the OM. Compara-
ble values were found in the following studies: (Ce-
garra et al., 1996; Cayuelaet et al., 2006) for MSO, 
(Gigliotti et al., 2012; Chowdhury et al., 2015) for 
SBPO, and (Sánchez-Arias et al., 2008) for SBO. 
Regarding the fluctuations in the K, Na, Ca, and Mg 
levels, they may be attributed to the evaporation or 
retention of water during composting.The incom-
plete degradation of phenols in the SBO mixture can 
be attributed to the fact that SB, being an agricultural 
by-product, absorbed the highest amount of phenols 
(75%). However, it’s noteworthy that the maturity 
of compost is closely linked to the content of poly-
phenols, as indicated by previous studies (Saviozzi, 
1987; Dinel et al., 1996).

The physicochemical characteristics of com-
posts MSO, SBPO, and SBO as well as those of cer-
tain commercial composts, are provided in Table 3. 
The pH of composts MSO, SBPO, and SBO varied 
from 7.01 to 8.41 after the composting process, and 
these values fall within the range recommended by 
(Mustin, 1987; Das, 2008). For an optimal decom-
position of OM, bacteria and fungi require the condi-
tions where the pH is between 5.5 and 8.5. The pH 
range of composts should be between 6.0 and 8.5 
to be compatible with the majority of plants (Asses 
et al., 2018). The EC of all the mixtures examined 
in this work is below 12 mS/cm. Values exceeding 
12 mS/cm caused toxicity in the majority of plants 
(Lasaridi et al., 2006). According to the XP CEN/TS 
17730 standard, the composts analyzed in this study 
comply with the requirement of containing more 
than 20% OM. The composts studied have an organ-
ic carbon content of approximately 50%, as shown 
in table 3. These values are similar to those of the 
commercial composts studied by (Zmora-Nahum 
et al., 2007). The abundance of OM and OC in the 
composts is a reflection of the nature of the residues, 
containing substantial amounts of lignin (Asses et al., 
2018). Composts MSO, SBPO, and SBO have the 
following respective total nitrogen values: 3.75%, 
4.37%, and 2.14%. The C/N ratio ranged from 11.72 
to 24.93. SBO presented the highest C/N ratio, hav-
ing the lowest total nitrogen value. The incorporation 
of compost with a C/N ratio below 15 into the soil is 
unlikely to disturb its microbiological balance (Ber-
nal et al., 1998). The Na and Ca values in all com-
posts are comparable to those found in commercial 
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composts. All composts have higher values of P and 
K than commercial composts, with the exception of 
P in SBO. However, (Silva et al., 2016) conducted a 
comprehensive study on different commercial com-
posts, evaluating their physicochemical properties, 
stability, and maturity. The results showed that none 
of the analyzed commercial composts are suitable 
for soil amendment, as at least one parameter ex-
ceeded the recommended limits. Hence, it is impor-
tant to be careful when using any commercial com-
post as a reference for soil improvement, particular-
ly, when it comes to the levels of heavy metals and 
EC. However, the composts derived from solid olive 
mill waste, investigated by (Tortosa et al., 2012), 
met the requirements of Spanish fertilizer regula-
tions (PRE/630/2011 2011). Phenols in SBPO and 
MSO underwent complete degradation, while SBO 
did not exhibit complete degradation of phenols. The 

findings of this study reveal that the classification of 
composts, ranked from the most to the least perform-
ing, is as follows: SBPO > MSO > SBO.

Using organic waste, like OMW, as fertil-
izer can decrease dependence on costly com-
mercial fertilizers that require substantial re-
sources and energy for production. Addition-
ally, integrating OMW into agriculture has the 
potential to lower waste treatment expenses. 
Though there is a wide selection of high-
quality composts on the market, their produc-
tion sites are often distant from the plantation 
nurseries. This geographical gap leads to in-
creased production costs due to transportation. 
Consequently, it becomes essential to consider 
locally produced available substrates near the 
nurseries as a means to reduce costs effectively 
(Manca et al., 2020).

Table 3. Physicochemical characteristics comparison of the MSO, SBPO, and SBO composts at final state and 
commercial products (dry weight basis)

Parameters MSO SBPO SBO Commercial compost

pH 8.15 8.41 7.01

6.0 (Manca et al., 2020)
8.0–9.0 (Silva et al., 2013)
7.01 (Romero et al., 2013)
7.97–8.88 (Tortosa et al., 2012)
5.27–8.36 (Zmora-Nahum et al., 2007)

EC (mS/cm) 3.52 3.18 2.28
4.9–8.1 (Silva et al., 2013)
1.69–2.44 (Tortosa et al., 2012)
0.56–8.70 (Zmora–Nahum et al., 2007)

OM (%) 89 88.31 91.99

25 (Manca et al., 2020)
33.2–64.5 (Silva et al., 2013)
56.12–76.03 (Tortosa et al., 2012)
18.0–86.4 (Zmora-Nahum et al., 2007)

Ash (%) 10.4 10.89 6 –

OC (%) 51.62 51.22 53.36
16.6–32.2 (Silva et al., 2013)
25.19–40.31 (Tortosa et al., 2012)
8.2–49.2 (Zmora-Nahum et al., 2007)

TKN(%) 3.75 4.37 2.14

0.5 (Manca et al., 2020)
1.6–2.4 (Silva et al., 2013)
1.86–2.11 (Tortosa et al., 2012)
0.67–3.79 (Zmora-Nahum et al., 2007)

C/N 13.77 11.72 24.93

28 (Manca et al., 2020)
8.7–20.1 (Silva et al., 2013)
13.5–19.5 (Tortosa et al., 2012)
9.8– 21.6 (Zmora-Nahum et al., 2007)

P (%) 0.78 0.25 0.15 0.086 (Manca et al., 2020)
0.18–0.22 (Tortosa et al., 2012)

K (%) 1.93 1.8 1.41 0.166 (Manca et al., 2020)
0.65–1.28 (Tortosa et al., 2012)

Na (%) 0.14 0.14 0.12 0.0235 (Manca et al., 2020)
0.6–0.83 (Tortosa et al., 2012)

Ca (%) 0.4 0.6 0.12 0.3 (Manca et al., 2020)
1.87–7.24 (Tortosa et al., 2012)

Mg (%) 0.36 0.46 0.22 1.3 (Manca et al., 2020)
0.49–1.27 (Tortosa et al., 2012)

TPC (µg GAE/g 
DW) 0 0 385 –

Note: EC: electrical conductivity, OM: organic matter, TKN: total Kjeldahl nitrogen, P: phosphorus, K: potassium, 
Na: sodium, Ca: calcium, Mg: magnesium, TPC: total phenol content.
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CONCLUSIONS

In light of the results and discussions, it ap-
pears that co-composting OMW with various ag-
ricultural by-products offers a promising pathway 
for producing high-quality organic fertilizers. The 
results of this study indicate variation in perfor-
mance among the composts examined. In addi-
tion to the mixture with SBPO which stood out 
as the most promising, the compost made from 
MSO also demonstrated encouraging perfor-
mance, followed by the one based on SBO. This 
ranking in compost performance underscores the 
diversity of materials used and the potential im-
pact of different blends on the quality of the final 
compost. These conclusions highlight the impor-
tance of further research in this area to better un-
derstand the long-term impacts on soil health and 
crop productivity. It is also crucial to emphasize 
that this approach offers a sustainable solution 
for waste management in the olive oil industry, 
reducing dependence on inorganic fertilizers and 
promoting environmentally friendly agricultural 
practices. Additionally, this study paves the way 
for new research on previously unexplored ma-
terial combinations, thus providing opportunities 
for innovation and ongoing improvement in sus-
tainable agricultural practices. 
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