PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Catalytic Effect of Mn2O3 Nanoparticles on the Ignition Reaction of Pyrotechnic of Ammonium Nitrate(V)/Thiourea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-isothermal TG/DSC technique has been used to study the kinetic triplet and heat of ignition reaction of ammonium nitrate(V) (AN)/thiourea (TU) pyrotechnic in the presence of Mn2O3 catalyst nanoparticles under an argon atmosphere at different heating rates (5 K·min−1, 10 K·min−1, 15 K·min−1 and 20 K·min−1). The activation energies for the ignition reaction of AN/TU were calculated using the non-isothermal isoconversional Kissinger-Akahira-Sunose (KAS) and Friedman equations for different conversion fraction (α) values in the range 0.1-0.9. The pre-exponential factor and kinetic model were determined by means of the compensation effect and the selected model was confirmed by a nonlinear fitting method. The average activation energies in the absence and presence of 5 wt.% Mn2O3 nanoparticles were 110.1 kJ·mol−1 to 117.3 kJ·mol−1 for the reaction model A3 (g(α) = [−ln(1−α)]1/3), and 86.5 kJ·mol−1 to 101.8 kJ·mol−1 for the reaction model A4 (g(α) = [−ln(1−α)]1/4). The evolved heat (ΔH) of ignition reaction in the presence of Mn2O3 was about 4 times that in the absence of the nano-sized Mn2O3.
Rocznik
Strony
430--447
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
autor
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
Bibliografia
  • [1] Pouretedal, H. R.; Ravanbod, M. Kinetic Study of Ignition of Mg/NaNO3 Pyrotechnic Using Non-isothermal TG/DSC Technique. J. Therm. Anal. Calorim. 2015, 119: 2281-2288.
  • [2] Conkling, J. A. Chemistry of Pyrotechnics: Basic Principles and Theory. 1st ed., Marcel Dekker Inc., New York 1985, p. 51; ISBN 9781574447408.
  • [3] Izato, Y.; Miyake, A.; Date, S. Combustion Characteristics of Ammonium Nitrate and Carbon Mixtures Based on a Thermal Decomposition Mechanism. Propellants Explos. Pyrotech. 2013, 38: 129-135.
  • [4] Zygmunt, B. Detonation Parameters of Mixtures Containing Ammonium Nitrate and Aluminium, Cent. Eur. J. Energ. Mater. 2009, 6: 57-66.
  • [5] Kajiyama, K.; Izato, Y.; Miyake, A. Thermal Characteristics of Ammonium Nitrate, Carbon, and Copper(II) Oxide Mixtures. J. Therm. Anal. Calorim. 2013, 113: 1475-1480.
  • [6] Oommen, C.; Jain, S. R. Ammonium Nitrate: A Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67: 253-281.
  • [7] Chaturvedi, S.; Dave, P. N. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31: 1-26.
  • [8] Wharton, R. K.; Barratt, A. J. Observations on the Reactivity of Pyrotechnic Compositions Containing Potassium Chlorate and Thiourea. Propellants Explos. Pyrotech. 1993, 18: 77-80.
  • [9] Czajka, B.; Foltynowicz, Z.; Wachowski, L. A Study of the Influence of Selected Transition Metals on the Solid State Reactivity in a Fe-KClO4 Mixture. Cent. Eur. J. Energ. Mater. 2014, 11: 271-283.
  • [10] Babar, Z.; Malik, A. Q. Thermal Decomposition and Kinetic Evaluation of Composite Propellant Material Catalyzed with Nano Magnesium Oxide. NUST Journal of Engineering Sciences 2014, 7: 5-14.
  • [11] Ba, S.; Zhang, Z.; Yan, M.; Sun, Z.; Teng, X. Effect of Nano-CuO on Luminous Intensity of Pyrotechnics Composite Containing KClO4 and Al. Appl. Mech. Mater. 2012, 217-219: 669-672.
  • [12] Martins, S.; Fernandes, J. B.; Mojumdar, S. C. Catalysed Thermal Decomposition of KClO3 and Carbon Gasification. J. Therm. Anal. Calorim. 2015, 119: 831- 835.
  • [13] Kapoor, I. P. S.; Srivastava, P.; Singh, G. Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2009, 34: 351-356.
  • [14] Mahinroosta, M. Catalytic Effect of Commercial Nano-CuO and Nano-Fe2O3 on Thermal Decomposition of Ammonium Perchlorate. J. Nanostruct. Chem. 2013, 3: 1-6.
  • [15] Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520: 1-19.
  • [16] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29: 1702-1706.
  • [17] Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Research Report of Chiba Institute of Technology 1971, 16: 22-31.
  • [18] Friedman, H. L. Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry, Application to a Phenolic Plastic. J. Polym. Sci., Part C: Polym. Symp. 1964, 6: 183-195.
  • [19] ASTM E537-07, Standard Test Method for the Thermal Stability of Chemicals by Differential Scanning Calorimetry. Annual Book of ASTM Standards. Vol. 14.02, ASTM International, West Conshohocken, PA 2007.
  • [20] Ravanbod, M.; Pouretedal, H. R. Catalytic Effect of Fe2O3, Mn2O3, and TiO2 Nanoparticles on Thermal Decomposition of Potassium Nitrate. J. Therm. Anal. Calorim. 2016, 124: 1091-1098.
  • [21] Wang, Z. H.; Geng, D. Y.; Hu, W. J.; Ren, W.J.; Zhang, Z.D. Magnetic Properties and Exchange Bias in Mn2O3/Mn3O4 Nanoclusters. J. Appl. Phys. 2009, 105: 07A315/1-3.
  • [22] Scherrer, P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittel Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Gottingen. Mathematisch Physikalische Klasse 1918, 2: 98-100.
  • [23] SimoÄes, P. N.; Pedroso, L. M.; Portugala, A. A.; Campos, J. L. Study of the Decomposition of Phase Stabilized Ammonium Nitrate (PSAN) by Simultaneous Thermal Analysis: Determination of Kinetic Parameters. Thermochim. Acta 1998, 319: 55-65.
  • [24] Wang, S.; Gao, Q.; Wang, J. Thermodynamic Analysis of Decomposition of Thiourea and Thiourea Oxides. J. Phys. Chem. B 2005, 109: 17281-17289.
  • [25] Wang, Z. D.; Yoshida, M.; George, B. Theoretical Study on the Thermal Decomposition of Thiourea. Comput. Theor. Chem. 2013, 1017: 91-98.
  • [26] Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies. CRC Press, Boca Raton, FL 2007; ISBN 9780849373664.
  • [27] Pouretedal, H. R.; Damiri, S.; Ghaemi, E. F. Non-isothermal Studies on the Thermal Decomposition of C4 Explosive Using the TG/DTA Technique. Cent. Eur. J. Energ. Mater. 2014, 11: 405-416.
  • [28] Ren, Y. H.; Zhao, F. Q.; Yi, J. H.; Xu, K. Z.; Ma, H. X.; Hu, R. Z.; Song, J. R. Studies on an Ionic Compound (3-ATz)+ (NTO)–: Crystal Structure, Specific Heat Capacity, Thermal Behaviors and Thermal Safety. J. Iran. Chem. Soc. 2012, 9: 407-414.
  • [29] Ravanbod, M.; Pouretedal, H. R.; Amini, M. K.; Ebadpour, R. Kinetic Study of the Thermal Decomposition of Potassium Chlorate Using the Non-isothermal TG/DSC Technique. Cent. Eur. J. Energ. Mater. 2016, 13: 505-525.
  • [30] Chaturvedi, S.; Dave, P. N. A Review on the Use of Nanometals as Catalysts for the Thermal Decomposition of Ammonium Perchlorate. J. Saudi Chem. Soc. 2013, 17: 135-149.
  • [31] Zhang, Y.; Kshirsagar, G.; Ellison, J. E. Catalytic Effects of Metal Oxides on the Thermal Decomposition of Sodium Chlorate. Thermochim. Acta 1993, 228: 147-154.
  • [32] Vargeese, A. A.; Muralidharan, K.; Krishnamurthy, V. N. Kinetics of Nano Titanium Dioxide Catalyzed Thermal Decomposition of Ammonium Nitrate and Ammonium Nitrate-based Composite Solid Propellant. Propellants Explos. Pyrotech. 2015, 40: 260-266.
  • [33] Kennedy, J. A.; Clark, S. M. A New Method for the Analysis of Non-isothermal DSC and Diffraction Data. Thermochim. Acta 1997, 307: 27-35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ed00419-1c43-49a5-8a2a-fb8905e1c109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.