PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mixed FEM for analysis of quantum-dot systems based on gradient theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The QD nanostructures are analyzed under a thermal load. The dimensions of the QDs are of the same order as the material length scale. Therefore, the gradient elasticity theory should be applied to account for the size-dependent behavior of such nano-sized QDs. Since governing equations contain higher order derivatives than in conventional approaches the C1-elements are required for approximation of primary fields in the FEM. The mixed FEM are developed here, where C0 continuous interpolation is applied independently for displacement and displacement gradients. The kinematic constraints between strains and displacements are satisfied by collocation at some cleverly chosen internal points in elements. A unit cell of Indium Arsenide QD in a finite sized Gallium Arsenide (GaAs) substrate is analysed.
Wydawca
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr.29 poz., rys.
Twórcy
autor
  • Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
  • Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
  • Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
  • Faculty of Mechanical Engineering, University of Zilina, 01026 Zilina, Slovakia
Bibliografia
  • Aifantis, E., 1984, On the microstructural origin of certain inelastic models, ASME J. Eng. Mater. Technol., 106, 326-330.
  • Altan, S., Aifantis, E., 1992, On the structure of the mode III crack-tip in gradient elasticity, Scripta Metall. Mater., 26, 319-324.
  • Askes, H., Aifantis, E.C., 2011, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification rocedures, finite element implementations and new results, Int. J. Solids Struct., 48, 1962-1990.
  • Benabbas, T., Francois, P., Androussi, Y., Lefebvre, A., 1996, Stress relaxation in highly strained InAs/GaAs structures as studied by finite element analysis and transmission electron microscopy, J. Appl. Phys., 80, 2763-2767.
  • Bimberg, D., Grundmann, M., Ledentsov, N.N., 1998, Quantum Dot Heterostructures, Wiley, New York.
  • Bishay, P.L., Atluri, S.N., 2012, High performance 3D hybrid/mixed, and simple 3D Voronoi cell finite elements, for macro- & micro-mechanical modeling of solids, without using multi-field variational principles, CMES: Computer Modeling in Engineering & Sciences, 84, 41-97.
  • Chen, X.O., Dong, B., Lei, X.L., 2008, Thermal rectification effect of and interacting quantum dot, Chin. Phys. Lett., 25, 3032-3035.
  • Davies, J.H., Larkin, I.A., 1994, Theory of potential modulation in lateral surface superlattices, Phys. Rev. B, 49, 4800.
  • Davies, J.H., 1998, Elastic and piezoelectric fields around a buried quantum dot: A simple picture, J. Appl. Phys., 84, 1358-1365.
  • DiVincenzo, D.P., 1986, Dispersive corrections to continuum elastic theory in cubic crystals, Phys. Rev. B., 34, 5450-5465.
  • Dong, L., Atluri, S.N., 2011, A simple procedure to develop efficient & stable hybrid/mixed elements, and Voronoi cell finite elements for macro- & micromechanics, CMC: Computers, Materials & Continua, 24, 61-104.
  • Giazotto, F., Heikkil, T.T., Luukanen, A., Savin, A.M., Pekola, J.P., 2006, Opportunities for mesoscopics in thermometry and refrigeration: Physics and Applications, Rev. Mod. Phys., 78, 217-274.
  • Gitman, I., Askes, H., Kuhl, E., Aifantis, E., 2010, Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity, International Journal of Solids and Structures, 47, 1099-1107.
  • Glazov, V.M., Pashinkin, A.S., 2000, Thermal expansion and heat capacity of GaAs and InAs, Inorganic Materials, 36, 225-231.
  • Grundmann, M., Stier, O., Bimberg, D., 1995, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure, Phys. Rev. B, 52, 11969.
  • Jogai, B., 2001, Three-dimensional strain field calculations in multiple InN/AlN wurtzite quantum dots, J. Appl. Phys., 90, 699.
  • Liang, X., Shen, S.P., 2013, Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity, Int. J. Appl. Mech., 5, 1350015.
  • Liao, X.Z., Zhou, J., Cockayne, D.J.H., Leon, R., Lobo, C., 1999, Indium Segregation and Enrichment in Coherent InxGa1-x As/GaAs Quantum Dots, Phys. Rev. Lett., 82, 5148-5151.
  • Liu, Y.M., Yu, Z.Y., Ren, X.M., Xu Z.H., 2008, Self-organized GaN/AlN hexagonal quantum-dots: strain distribution and electronic structure, Chinese Physics B, 17, 3471-3478.
  • Majdoub, M.S., Sharma, P., Cagin, T., 2008, Enhanced sizedependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect, Physics Review B, 77,125424.
  • Mindlin, R.D., 1964, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78.
  • Pan, E., 2002a, Elastic and piezoelectric fields around a quantum dot: Fully coupled or semicoupled model, J. Appl. Phys., 91, 3785-3796.
  • Pan, E., 2002b, Elastic and piezoelectric fields in substrates GaAs (001) and GaAs (111) due to a buried quantum dot, J. Appl. Phys., 91, 6379-6387.
  • Parton, V.Z., Kudryavtsev, B.A., 1988, Electromagnetoelasticity,Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publishers, New York.
  • Patil, S.R., Melnik R.V.N., 2009, Thermoelectromechanical effects in quantum dots, Nanotechnology, 20, 125402.
  • Pryor, C., Pistol, M.E., Samuelson, L., 1997, Electronic structure of strained InP/Ga0.51In0.49P quantum dots, Phys. Rev. B, 56, 10404-10411.
  • Sladek, J., Sladek, V., Wunsche, M., Tan, C.L., 2017, Crack analysis of size-dependent piezoelectric solids under a thermal load, Engineering Fracture Mechanics, 182, 187-200.
  • Toupin, R.A., Gazis, D.C., 1963, Surface effects and initial stress in continuum and lattice models of elastic crystals. In: Wallis, R.F. (Ed.), Proc. Int. Conf. on Lattice Dynamics, Copenhagen, 597-605.
  • Yaghoubi, S.T., Mousavi, S.M., Paavola, J., 2017. Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity, International Journal of Solids and Structures, 109, 84-92.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9eccc9e8-e9e8-4ab0-b895-146468f3ff9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.