PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of propeller fouling on the hydrodynamic performance of a marine propeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Propeller performance is typically considered under clean conditions, despite the fact that fouling is an inevitable phenomenon for propellers. The main objective of this study is to investigate the effects of roughness due to fouling on the performance of a propeller using a CFD simulation in conjunction with the roughness function model. A simulation of a clean propeller is verified for a five-blade propeller model using existing experimental results. A roughness function model is then suggested based on existing measured roughness data. The simulations are extended for the same propeller under varying severities of roughness. Initially, it is concluded that KT and ηo gradually decrease with increasing fouling roughness, while KQ increases, compared to smooth propeller. For instance, at J=1.2 for medium calcareous fouling, KT is reduced by about 26%, KQ increases by about 7.0%, and ηo decreases by 30.9%. In addition, for the rough propeller, the extra power required is defined as the specific sea margin (SSM) to compensate for the power loss. A slight roughness causes a large decrease in ηo. A propeller painted with foul-release paint and an unpainted propeller are found to require 2.7% SSM and 57.8% SSM over four years of service, respectively. Finally, the use of foul-release paints for propeller painting is strongly advised.
Rocznik
Tom
Strony
61--73
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
  • Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
  • Faculty of Marine Technology, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
Bibliografia
  • 1. IMO, Second IMO GHG Study 2009. London, UK, 2009.
  • 2. A. Banawan, M. Mosleh, and I. Seddiek, “Prediction of the fuel saving and emissions reduction by decreasing speed of a catamaran,” J. Mar. Eng. Techno., (3), vol. 12, pp. 40-48, 2013.
  • 3. M. H. Ghaemi and H. Zeraatgar, “Impact of propeller emergence on hull, propeller, engine, and fuel consumption performance in regular waves,” Pol. Marit. Res. , (116), vol. 29, pp. 56-76, doi: 10.2478/pomr-2022-0044, 2022.
  • 4. M. Burak Samsul, “Blade cup method for cavitation reduction in marine propellers,” Pol. Marit. Res. , 2 (110), vol. 28, pp. 54-62, 10.2478/pomr-2021-0021, 2021.
  • 5. P. Król, “Blade section profile array lifting surface design method for marine screw propeller blade,” Pol. Marit. Res. , 4 (1040), vol. 26, pp. 134-141, doi: 10.2478/pomr-20190075, 2019.
  • 6. A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without WED,” Pol. Marit. Res. , 4 (108), vol. 27, pp. 50-59, doi: 10.2478/pomr-2020-0065, 2020.
  • 7. M. Perić, “Prediction of cavitation on ships,” Brodogradnja, vol. 73, no. 3, pp. 39-58, 2022.
  • 8. W. Tarełko, “The effect of hull biofouling on parameters characterizing ship propulsion system efficiency,” Pol. Marit. Res. , 4(84), vol. 21, pp. 27-34X, 2014, doi: 10.2478/ pomr-2014-0038.
  • 9. L. Guangnian, Q. Chen, and Y. Liu, “Experimental study on dynamic structure of propeller tip vortex,” Pol. Marit. Res. , 2 (106), vol. 27, pp. 11-18, 2020, doi: 10.2478/ pomr-2020-0022.
  • 10. Y. Zhang, X. Wu, M. Lai, G. Zhou, and J. Zhang, “Feasibility study of RANS in predicting propeller cavitation in behindhull condition,” Pol. Marit. Res. , 4 (108), vol. 27, pp. 26-35, 2020.
  • 11. ITTC Virtual, The Resistance and Propulsion Committee, Final Report and Recommendations to the 29th ITTC, 13-18 June ITTC 2021 Virtual.
  • 12. R. Townsin, and S. Dey, “The correlation of roughness drag with surface characteristics,” Fluid Mechanics and Its Applications, vol 6. Springer, Dordrecht, doi. org/10.1007/978-94-011-3526-9_10, 1991.
  • 13. Y. K. Demirel, “A CFD model for the frictional resistance prediction of antifouling coatings,” Ocean Eng., vol. 89, pp. 21-31, 2014.
  • 14. A. Vargas, and H. Shan, “Modeling of ship resistance as a function of biofouling type, coverage, and spatial variation,” in 2nd Hull Performance & Insight Conference, pp. 264-281, Ulrichshusen, Germany, 2017.
  • 15. C. Grigson, “Drag losses of new ships caused by hull finis,” J. Ship Res., vol. 36, no. 02, pp. 182-196, 1992.
  • 16. S. Song et al., “Investigating the effect of heterogeneous hull roughness on ship resistance using CFD,” JMSE, vol. 9, no. 2, p. 1, 2021.
  • 17. T. Cebeci and P. Bradshaw, “Momentum transfer in boundary layers,” in Series in Thermal and Fluids Engineering, P. Bradshaw, Ed. Washington: Hemisphere Pub. Corp., 1977.
  • 18. A. Farkas, N. Degiuli, and I. Martić, “Towards the prediction of the effect of biofilm on the ship resistance using CFD,” Ocean Eng., vol. 167, pp. 169-186, 2018.
  • 19. A. Farkas, N. Degiuli, L. Martic, and R. Dejhalla, “Impact of hard fouling on the ship performance of different ship forms,” JMSE, vol. 8, p. 748, 2020.
  • 20. A. Farkas, N. Degiuli, and I. Martić, “Impact of biofilm on the resistance characteristics and nominal wake,” Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 234, no. 1, pp. 59-75, 2020.
  • 21. A. Farkas, N. Degiuli, and I. Martić, “A novel method for the determination of frictional resistance coefficient for a plate with inhomogeneous roughness,” Ocean Eng., vol. 237, p. 109628, 2021.
  • 22. P. Kellett, K. Mizzi, K. Demirel, and O. Turan, “Investigation the roughness effect of biofouling on propeller performance,” International Conference on Shipping in Changing Climates, SEMANTIC SCHOLAR, ID 55216316, 2015.
  • 23. D. Owen, Y.K. Demirel, E. Oguz, T. Tezdoga, and A. Incecik, “Investigating the effect of biofouling on propeller characteristics using CFD,” Ocean Eng., vol. 159, pp. 505516, 2018.
  • 24. S. Song, Y. Demirel, and M. Atlar, “An investigation into the effect of biofouling on full-scale propeller performance using CFD,” in: Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore & Arctic Engineering OMAE2019, June 9-14, 2019, Glasgow, Scotland, UK, 2019.
  • 25. S. Song, Y. Demirel, and M. Atlar, “Propeller performance penalty of biofouling: CFD prediction,” J. Offshore Mech. Arct. , vol. 142, no. 6, p. 0601901, 2020.
  • 26. A. Farkas, N. Degiuli, and I. Martić, “The impact of biofouling on the propeller performance,” Ocean Eng., vol. 219, p. 108376, 2021.
  • 27. A. Farkas, N. Degiuli, and I. Martić, “Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method,” International Journal of Naval Architecture and Ocean Eng., vol. 13, pp. 102114, 2021.
  • 28. A. Farkas, S. Song, N. Degiuli, I. Martić, and Y.K. Demirel, “Impact of biofilm on the ship propulsion characteristics and the speed reduction,” Ocean Eng., vol. 199, p. 107033, 2020.
  • 29. M. P. Schultz and K. A. Flack, “The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime,” J. Fluid Mech., vol. 580, pp. 381-405, 2007.
  • 30. SVA Hydrodynamic Solutions, “Potsdam Propeller Test Case (PPTC) Open Water Tests with the Model Propeller VP1304,” 2011.
  • 31. L. F. Richardson, and J. A. Gaunt, “The deferred approach to the limit,” Philosophical Transactions of the Royal Society of London: Series A, vol. 226, pp. 299-361, 1927.
  • 32. U. Barkmann, H. Heinke, and L. Lubke, “Potsdam propeller test case (PPTC) test case description,” in: Second International Symposium on Marine Propulsors SMP’11, Hamburg, Germany, Workshop: Propeller Performance, 2011.
  • 33. M. P. Schultz, “Frictional resistance of antifouling coating systems,” J. Fluids Eng., vol. 126, pp. 1039-1047, 2004.
  • 34. J. Carlton, Marine Propellers and Propulsion. London: Butterworth Heinemann, 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ecb32f5-aa79-4b7b-962f-247264618039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.