Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove the existence of a unique weak solution for a class of fractional systems of Schrodinger equations by using the Minty-Browder theorem in the Cartesian space. To this aim, we need to impose some growth conditions to control the source functions with respect to dependent variables.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
313--322
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Department of Pure Mathematics Faculty of Science Imam Khomeini International University P.O. Box 34149-16818, Qazvin, Iran
autor
- Department of Pure Mathematics Faculty of Science Imam Khomeini International University P.O. Box 34149-16818, Qazvin, Iran
Bibliografia
- [1] F. Abdolrazaghi, A. Razani, On the weak solutions of an overdetermined system of nonlinear fractional partial integro-differential equations, Miskolc Math. Notes 20 (2019), 3-16.
- [2] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in HŁN, J. Differential Equations 255 (2013), 2340-2362.
- [3] B. Barrios, E. Colorado, A. De Pablo, U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162.
- [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, 2010.
- [5] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260.
- [6] X. Chang, Ground state solutions of asymptotically linear fractional Schrodinger equations, J. Math. Phys. 54 (2013), 061504.
- [7] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26 (2013), 479-494.
- [8] K. Diethelm, The Analysis of Fractional Differential Equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
- [9] S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrodinger type problem involving the fractional Laplacian, arXiv:1202.0576, (2012).
- [10] P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237-1262.
- [11] A. Fiscella, P. Pucci, S. Saldi, Existence of entire solutions for Schrddinge.r-Ha.rdy systems involving two fractional operators, Nonlinear Anal. 158 (2017), 109-131.
- [12] A. Fiscella, P. Pucci, B. Zhang, p-fractional Hardy-Schrodinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal. 8 (2019) 1, 1111-1131.
- [13] Y. Fu, H. Li, P. Pucci, Existence of nonnegative solutions for a class of systems involving fractional (p,q)-Laplacian operators, Chin. Ann. Math. Ser. B 39 (2018), 357-372.
- [14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
- [15] N. Nyamoradi, A. Razani, Existence of solutions for a new p-Laplacian fractional boundary value problem with impulsive effects, Journal of New Researches in Mathematics 5 (2019), 117-128.
- [16] I. Podlubny, The Laplace transform, method for linear differential equations of the fractional order, arXiv:funct-an/9710005, (1997).
- [17] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press, San Diego, California, USA, 1999.
- [18] A. Razani, Weak and strong detonation profiles for a qualitative model, J. Math. Anal. Appl. 276 (2002), 868-881.
- [19] A. Razani, Weak Chapman- Jouguet detonation profile for a qualitative model, Bull. Aust. Math. Soc. 66 (2002), 393-403.
- [20] A. Razani, Existence of Chapman-Jouguet detonation for a viscous combustion model J. Math. Anal. Appl. 293 (2004), 551-563.
- [21] A. Razani, Shock waves in gas dynamics, Surv. Math. Appl. 2 (2007), 59-89.
- [22] A. Razani, Chapman-Jouguet travelling wave for a two-steps reaction scheme, Ital. J. Pure Appl. Math. 39 (2018), 544-553.
- [23] A. Razani, Subsonic detonation waves in porous media, Phys. Scr. 94 (2019), no. 085209.
- [24] S. Secchi, On fractional Schrodinger equations in RN without the Ambrosetti-Rabinowitz condition, arXiv:1210.0755 (2012).
- [25] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102.
- [26] J. Tan, Y. Wang, J. Yang, Nonlinear fractional field equations, Nonlinear Anal. 75 (2012), 2098-2110.
- [27] J. Xu, Z. Wei, W. Dong, Existence of weak solutions for a fractional Schrodinger equation, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 1215-1222.
- [28] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), 200-218.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9eca1156-9274-44b0-9317-8cb061416de9