PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative review of electrical energy storage systems for better sustainability

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accelerated growth of the energy economy is still highly dependent on finite fossil fuel reserves. Modern power systems could not exist without the many forms of electricity storage that can be integrated at different levels of the power chain. This work contains a review of the most important applications in which storage provides electricity-market opportunities along with other benefits such as arbitrage, balancing and reserve power sources, voltage and frequency control, investment deferral, cost management and load shaping and levelling. Using a 5 function normalization technique a comparative assessment of 19 electrical energy storage (EES) technologies, based on their technical and operational characteristics, is carried out and the technology-application pairs identified across the power chain are presented. In terms of safety and simplicity, Pbacid and Li-ion systems are viable options for small-scale residential applications, while advanced Pbacid and molten-salt batteries are suited to medium-to-large scale applications including commercial and industrial consumers. In addition to their expected use in the transportation sector in the coming years, regenerative fuel cells and flow batteries have intriguing potential to offer in stationary applications once they are mature for commercialization. For large-scale/energy-management applications, pumped hydro is the most reliable energy storage option (over compressed-air alternatives) whereas flywheels, supercapacitors and superconducting magnetic energy storage (SMES) are still focused on power-based applications. As different parts in the power system involve different stakeholders and services, each technology with its own benefits and weaknesses requires research and development in order to emerge over others and contribute to more effective energy production in the future.
Rocznik
Strony
220--245
Opis fizyczny
Bibliogr. 179 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus
  • Cyprus Energy Regulatory Authority, P.O. Box 24936, 1305 Nicosia, Cyprus
Bibliografia
  • [1] I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications, Renewable and sustainable energy reviews 13 (6) (2009) 1513-1522.
  • [2] H. Guasch, A. Serra, N. Corcoll, B. Bonet, M. Leira, Metal ecotoxicology in fluvial biofilms: potential influence of water scarcity, in: Water scarcity in the Mediterranean, Springer, 2010, pp. 41-53.
  • [3] H. Lund, Renewable energy strategies for sustainable development, Energy 32 (6) (2007) 912-919.
  • [4] T. N. Veziroğlu, S. Şahi, et al., 21st century s energy hydrogen energy system, Energy conversion and management 49 (7) (2008) 1820-1831.
  • [5] A. Zahedi, Maximizing solar pv energy penetration using energy storage technology, Renewable and Sustainable Energy Reviews 15 (1) (2011) 866-870.
  • [6] A. Poullikkas, S. Papadouris, G. Kourtis, I. Hadjipaschalis, Storage solutions for power quality problems in cyprus electricity distribution network, AIMS Energy 2 (2014) 1-17.
  • [7] J. Kaldellis, D. Zafirakis, E. Kaldelli, K. Kavadias, Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands, Renewable energy 34 (5) (2009) 1299-1311.
  • [8] M. Balat, Electricity from worldwide energy sources, Energy Sources, Part B 1 (4) (2006) 395-412.
  • [9] R. M. Dell, D. A. J. Rand, Energy storage, key technology for global energy sustainability, Journal of Power Sources 100 (1) (2001) 2-17.
  • [10] J. Baker, New technology and possible advances in energy storage, Energy Policy 36 (12) (2008) 4368-4373.
  • [11] P. Poonpun, W. T. Jewell, Analysis of the cost per kilowatt hour to store electricity, IEEE Transactions on energy conversion 23 (2) (2008) 529-534.
  • [12] Ecofys, ŞEnergy Storage Opportunities and Challenges Energy Storage Opportunities and Challenges, Ť 2014.
  • [13] B. Hodges and M. Sheriff, ŞMoving Energy Storage from Concept to Reality, Ť Energy, pp. 1Ű79, 2011.
  • [14] P. Medina, A. W. Bizuayehu, J. P. Catalao, E. M. Rodrigues, J. Contreras, Electrical energy storage systems: Technologies’ state-of-the-art, techno-economic benefits and applications analysis, in: System Sciences (HICSS), 2014 47th Hawaii International Conference on, IEEE, 2014, pp. 2295-2304.
  • [15] S. Sabihuddin, A. E. Kiprakis, M. Mueller, A numerical and graphical review of energy storage technologies, Energies 8 (1) (2014) 172-216.
  • [16] J. P. Deane, B. Ó. Gallachóir, E. McKeogh, Techno-economic review of existing and new pumped hydro energy storage plant, Renewable and Sustainable Energy Reviews 14 (4) (2010) 1293-1302.
  • [17] J. Kaldellis, Integrated electrification solution for autonomous electrical networks on the basis of res and energy storage configurations, Energy Conversion and Management 49 (12) .
  • [18] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progress in Natural Science 19 (3) (2009) 291-312.
  • [19] C.-J. Yang, R. B. Jackson, Opportunities and barriers to pumped hydro energy storage in the united states, Renewable and Sustainable Energy Reviews 15 (1) (2011) 839-844.
  • [20] B. Roberts, ŞCapturing Grid Power 32, Ť no. august, pp. 32U˝ 41, 2009.
  • [21] J. Pittock, Better management of hydropower in an era of climate change, Water Alternatives 3 (2) (2010) 444.
  • [22] A. I. Federal, ŞExecutive Summary, Ť 1972.
  • [23] J. S. Anagnostopoulos, D. E. Papantonis, Pumping station design for a pumped-storage wind-hydro power plant, Energy Conversion and Management 48 (11) (2007) 3009-3017.
  • [24] J. A. Suul, K. Uhlen, T. Undeland, Wind power integration in isolated grids enabled by variable speed pumped storage hydropower plant, in: Sustainable Energy Technologies, 2008. ICSET 2008. IEEE International Conference on, IEEE, 2008, pp. 399-404.
  • [25] J. A. Suul, K. Uhlen, T. Undeland, et al., Variable speed pumped storage hydropower for integration of wind energy in isolated grids: case description and control strategies, in: NordicWorkshop on Power and Industrial Electronics (NORPIE/2008), June 9-11, 2008, Espoo, Finland, Helsinki University of Technology, 2008.
  • [26] D. Akinyele, R. Rayudu, Review of energy storage technologies for sustainable power networks, Sustainable Energy Technologies and Assessments 8 (2014) 74-91.
  • [27] A. Oberhofer, P. Meisen, Energy storage technologies & their role in renewable integration, Global Energy Network Institute 1.
  • [28] H. Lund, G. Salgi, The role of compressed air energy storage (caes) in future sustainable energy systems, Energy Conversion and Management 50 (5) (2009) 1172-1179.
  • [29] H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems - characteristics and comparisons, Renewable and sustainable energy reviews 12 (5) (2008) 1221-1250.
  • [30] J. B. Greenblatt, S. Succar, D. C. Denkenberger, R. H. Williams, R. H. Socolow, Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy 35 (3) (2007) 1474-1492.
  • [31] A. Cavallo, Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (caes), Energy 32 (2) (2007) 120-127.
  • [32] S. Van der Linden, Bulk energy storage potential in the usa, current developments and future prospects, Energy 31 (15) (2006) 3446-3457.
  • [33] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy 137 (2015) 511-536.
  • [34] S. Zunft, C. Jakiel, M. Koller, C. Bullough, Adiabatic compressed air energy storage for the grid integration of wind power, in: Sixth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Windfarms, 26-28 October 2006, Delft, the Netherlands, 2006, pp. 346-351.
  • [35] E. M. Helsingen, Adiabatic compressed air energy storage, Master’s thesis, NTNU (2015).
  • [36] N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, Simulation and analysis of different adiabatic compressed air energy storage plant configurations, Applied Energy 93 (2012) 541-548.
  • [37] K. Bradbury, Energy storage technology review, Duke University (2010) 1-34.
  • [38] Y.-M. Kim, J.-H. Lee, S.-J. Kim, D. Favrat, Potential and evolution of compressed air energy storage: energy and exergy analyses, Entropy 14 (8) (2012) 1501-1521.
  • [39] C. Bullough, C. Gatzen, C. Jakiel, M. Koller, A. Nowi, S. Zunft, Advanced adiabatic compressed air energy storage for the integration of wind energy, in: Proceedings of the European Wind Energy Conference, EWEC, Vol. 22, 2012, p. 25.
  • [40] RWE Power AG, ŞAdeleŰAdiabatic Compressed-Air Energy Storage for Electricity Supply, Ť pp. 4Ű 5, 2010. (2010).
  • [41] D. J. Swider, Compressed air energy storage in an electricity system with significant wind power generation, IEEE transactions on Energy conversion 22 (1) (2007) 95-102.
  • [42] J. D. A. Goodwin, Compressed air batteries, Energ. Gr. (2011) 2-4.
  • [43] J. Proczka, K. Muralidharan, D. Villela, J. Simmons, G. Frantziskonis, Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage, Energy Conversion and Management 65 (2013) 597-605.
  • [44] S. M. Schoenung, Characteristics and technologies for long-vs. shortterm energy storage, United States Department of Energy.
  • [45] P. J. Hall, E. J. Bain, Energy-storage technologies and electricity generation, Energy policy 36 (12) (2008) 4352-4355.
  • [46] J. R. Hull, T. M. Mulcahp, K. L. Uherka, R. A. Erck, R. G. Abboud, Flywheel energy storage using superconducting magnetic bearings, Applied superconductivity 2 (7) (1994) 449-455.
  • [47] A. K. Arani, H. Karami, G. Gharehpetian, M. Hejazi, Review of flywheel energy storage systems structures and applications in power systems and microgrids, Renewable and Sustainable Energy Reviews 69 (2017) 9-18.
  • [48] B. Bolund, H. Bernhoff, M. Leijon, Flywheel energy and power storage systems, Renewable and Sustainable Energy Reviews 11 (2) (2007) 235-258.
  • [49] F. Rahman, S. Rehman, M. A. Abdul-Majeed, Overview of energy storage systems for storing electricity from renewable energy sources in saudi arabia, Renewable and Sustainable Energy Reviews 16 (1) (2012) 274-283.
  • [50] H. Liu, J. Jiang, Flywheel energy storage an upswing technology for energy sustainability, Energy and buildings 39 (5) (2007) 599-604.
  • [51] M. Wang, Application of flywheel energy storage system to enhance transient stability of power systems, Electric Power Components and Systems 33 (4) (2005) 463-479.
  • [52] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, A. Emadi, Energy storage systems for automotive applications, IEEE Transactions on industrial electronics 55 (6) (2008) 2258-2267.
  • [53] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, J. M. Carrasco, Energy storage systems for transport and grid applications, IEEE Transactions on Industrial Electronics 57 (12) (2010) 3881-3895.
  • [54] J. Cho, S. Jeong, Y. Kim, Commercial and research battery technologies for electrical energy storage applications, Progress in Energy and Combustion Science 48 (2015) 84-101.
  • [55] K. Divya, J. Østergaard, Battery energy storage technology for power systems: An overview, Electric Power Systems Research 79 (4) (2009) 511-520.
  • [56] K.-S. Ng, C.-S. Moo, Y.-C. Lin, Y.-C. Hsieh, Investigation on intermittent discharging for lead-acid batteries, PESC Rec. - IEEE Annu. Power Electron. Spec. Conf. 3839 (2008) 4683-4688.
  • [57] A. Poullikkas, A comparative overview of large-scale battery systems for electricity storage, Renewable and Sustainable Energy Reviews 27 (2013) 778-788.
  • [58] G. M. Ehrlich, Lithium-ion batteries, Handbook of batteries (2002) 35-53.
  • [59] A. L. Salgado, A. M. Veloso, D. D. Pereira, G. S. Gontijo, A. Salum, M. B. Mansur, Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with cyanex 272, Journal of Power Sources 115 (2) (2003) 367-373.
  • [60] W. H. Zhu, Y. Zhu, Z. Davis, B. J. Tatarchuk, Energy efficiency and capacity retention of ni-mh batteries for storage applications, Applied Energy 106 (2013) 307-313.
  • [61] M. Fetcenko, S. Ovshinsky, B. Reichman, K. Young, C. Fierro, J. Koch, A. Zallen, W. Mays, T. Ouchi, Recent advances in nimh battery technology, Journal of Power Sources 165 (2) (2007) 544-551.
  • [62] A. Shukla, S. Venugopalan, B. Hariprakash, Nickel-based rechargeable batteries, Journal of Power Sources 100 (1) (2001) 125-148.
  • [63] D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature chemistry 7 (1) (2015) 19-29.
  • [64] B. L. Ellis, L. F. Nazar, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science 16 (4) (2012) 168-177.
  • [65] S. J. Kazempour, M. P. Moghaddam, M. Haghifam, G. Yousefi, Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies, Renewable energy 34 (12) (2009) 2630-2639.
  • [66] M. Beaudin, H. Zareipour, A. Schellenberglabe, W. Rosehart, Energy storage for mitigating the variability of renewable electricity sources: An updated review, Energy for Sustainable Development 14 (4) (2010) 302-314.
  • [67] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources 195 (9) (2010) 2419-2430.
  • [68] J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, Journal of Power Sources 282 (2015) 299-322.
  • [69] I. Råde, B. A. Andersson, Requirement for metals of electric vehicle batteries, Journal of power sources 93 (1) (2001) 55-71.
  • [70] J. McDowall, P. Biensan, M. Broussely, Industrial lithium ion battery safety-what are the tradeoffs?, in: Telecommunications Energy Conference, 2007. INTELEC 2007. 29th International, IEEE, 2007, pp. 701-707.
  • [71] M. Skyllas-Kazacos, M. Chakrabarti, S. Hajimolana, F. Mjalli, M. Saleem, Progress in flow battery research and development, Journal of The Electrochemical Society 158 (8) (2011) R55-R79.
  • [72] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (6058) (2011) 928-935.
  • [73] M. A. DeLuchi, Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost, International Journal of Hydrogen Energy 14 (2) (1989) 81-130.
  • [74] M. Momirlan, T. N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, International journal of hydrogen energy 30 (7) (2005) 795-802.
  • [75] M. Momirlan, T. Veziroglu, Current status of hydrogen energy, Renewable and sustainable energy reviews 6 (1) (2002) 141-179.
  • [76] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renewable and Sustainable Energy Reviews 67 (2017) 597-611.
  • [77] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The us department of energy’s national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements, Catalysis today 120 (3) (2007) 246-256.
  • [78] D. Ross, Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars, Vacuum 80 (10) (2006) 1084-1089.
  • [79] S. G. Chalk, J. F. Miller, Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, Journal of Power Sources 159 (1) (2006) 73-80.
  • [80] C. H. Wendel, Z. Gao, S. A. Barnett, R. J. Braun, Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage, Journal of power sources 283 (2015) 329-342.
  • [81] A. Khaligh, Z. Li, Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art, IEEE transactions on Vehicular Technology 59 (6) (2010) 2806-2814.
  • [82] M. Ludwig, C. Haberstroh, U. Hesse, Exergy and cost analyses of hydrogen-based energy storage pathways for residual load management, International Journal of Hydrogen Energy 40 (35) (2015) 11348-11355.
  • [83] J. D. Holladay, J. Hu, D. L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis today 139 (4) (2009) 244-260.
  • [84] M. Ball, M. Wietschel, The future of hydrogen-opportunities and challenges, International journal of hydrogen energy 34 (2) (2009) 615-627.
  • [85] J. B. Goodenough, Energy storage materials: a perspective, Energy Storage Materials 1 (2015) 158-161.
  • [86] R. Shinnar, The hydrogen economy, fuel cells, and electric cars, Technology in Society 25 (4) (2003) 455-476.
  • [87] J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies, International Journal of Hydrogen Energy 37 (1) (2012) 1048-1057.
  • [88] A. Züttel, Materials for hydrogen storage, Materials today 6 (9) (2003) 24-33.
  • [89] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy 32 (9) (2007) 1121-1140.
  • [90] J. Kaldellis, D. Zafirakis, K. Kavadias, Techno-economic comparison of energy storage systems for island autonomous electrical networks, Renewable and Sustainable Energy Reviews 13 (2) (2009) 378-392.
  • [91] A. Ðukic, M. Firak, Hydrogen production using alkaline electrolyzer and photovoltaic (pv) module, Int. J. Hydrogen Energy 36 (2011) 7799-7806.
  • [92] A. K. Kaviani, G. Riahy, S. M. Kouhsari, Optimal design of a reliable hydrogen-based stand-alone wind/pv generating system, considering component outages, Renewable energy 34 (11) (2009) 2380-2390.
  • [93] M. Khan, M. Iqbal, Analysis of a small wind-hydrogen stand-alone hybrid energy system, Applied Energy 86 (11) (2009) 2429-2442.
  • [94] A. Khalilnejad, G. Riahy, A hybrid wind-pv system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer, Energy Conversion and Management 80 (2014) 398-406.
  • [95] B. Panahandeh, J. Bard, A. Outzourhit, D. Zejli, Simulation of pv-wind-hybrid systems combined with hydrogen storage for rural electrification, International Journal of Hydrogen Energy 36 (6) (2011) 4185-4197.
  • [96] R. J. Mantz, H. De Battista, Hydrogen production from idle generation capacity of wind turbines, International journal of Hydrogen energy 33 (16) (2008) 4291-4300.
  • [97] J. Carton, A.-G. Olabi, Wind/hydrogen hybrid systems: opportunity for irelands wind resource to provide consistent sustainable energy supply, Energy 35 (12) (2010) 4536-4544.
  • [98] F. J. Pino, L. Valverde, F. Rosa, Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems, Journal of Power Sources 196 (9) (2011) 4418-4426.
  • [99] R. Sarrias-Mena, L. M. Fernández-Ramírez, C. A. García-Vázquez, F. Jurado, Electrolyzer models for hydrogen production from wind energy systems, International Journal of Hydrogen Energy 40 (7) (2015) 2927-2938.
  • [100] J. I. Levene, M. K. Mann, R. M. Margolis, A. Milbrandt, An analysis of hydrogen production from renewable electricity sources, Solar Energy 81 (6) (2007) 773-780.
  • [101] M. ud din Mufti, S. A. Lone, S. J. Iqbal, M. Ahmad, M. Ismail, Supercapacitor based energy storage system for improved load frequency control, Electric Power Systems Research 79 (1) (2009) 226-233.
  • [102] D. Cericola, P. Ruch, R. Kötz, P. Novák, A. Wokaun, Simulation of a supercapacitor/li-ion battery hybrid for pulsed applications, Journal of Power Sources 195 (9) (2010) 2731-2736.
  • [103] A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization, Journal of power sources 112 (1) (2002) 236-246.
  • [104] J. Cao, A. Emadi, A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles, IEEE Transactions on power electronics 27 (1) (2012) 122-132.
  • [105] H. Gualous, D. Bouquain, A. Berthon, J. Kauffmann, Experimental study of supercapacitor serial resistance and capacitance variations with temperature, Journal of power sources 123 (1) (2003) 86-93.
  • [106] N. C. Hoyt, J. S. Wainright, R. F. Savinell, Current density scaling in electrochemical flow capacitors, Journal of The Electrochemical Society 162 (6) (2015) A1102-A1110.
  • [107] W. Buckles, W. V. Hassenzahl, Superconducting magnetic energy storage, IEEE Power Engineering Review 20 (5) (2000) 16-20.
  • [108] Y. e. a. Mizuguchi, Novel bis2 -based layered superconductor bi4 o4 s3, Preprint (2013) 1-13.
  • [109] H. Hosono, K. Tanabe, E. Takayama-Muromachi, H. Kageyama, S. Yamanaka, H. Kumakura, M. Nohara, H. Hiramatsu, S. Fujitsu, Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides, Science and Technology of Advanced Materials 16 (3) (2015) 033503.
  • [110] P. Turner, L. Nottale, A new ab initio approach to the development of high temperature superconducting materials, Journal of Superconductivity and Novel Magnetism 29 (12) (2016) 3113-3118.
  • [111] J. Eyer, G. Corey, Energy storage for the electricity grid: Benefits and market potential assessment guide, Sandia National Laboratories 20 (10) (2010) 5.
  • [112] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila- Robles, A review of energy storage technologies for wind power applications, Renewable and sustainable energy reviews 16 (4) (2012) 2154-2171.
  • [113] J. Zhu, M. Qiu, B. Wei, H. Zhang, X. Lai, W. Yuan, Design, dynamic simulation and construction of a hybrid hts smes (hightemperature superconducting magnetic energy storage systems) for chinese power grid, Energy 51 (2013) 184-192.
  • [114] B. Ni, C. Sourkounis, Control strategies for energy storage to smooth power fluctuations of wind parks, in: MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, IEEE, 2010, pp. 973-978.
  • [115] J. Kaldellis, D. Zafirakis, Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency, Energy 32 (12) (2007) 2295-2305.
  • [116] Z. Yu, F. Haghighat, B. C. Fung, H. Yoshino, A decision tree method for building energy demand modeling, Energy and Buildings 42 (10) (2010) 1637-1646.
  • [117] G. K. Tso, K. K. Yau, A study of domestic energy usage patterns in hong kong, Energy 28 (15) (2003) 1671-1682.
  • [118] Y. J. Zhang, C. Zhao, W. Tang, S. H. Low, Profit maximizing planning and control of battery energy storage systems for primary frequency control, IEEE Transactions on Smart Grid.
  • [119] R. Latha, S. Palanivel, J. Kanakaraj, Frequency control of microgrid based on compressed air energy storage system, Distributed Generation & Alternative Energy Journal 27 (4) (2012) 8-19.
  • [120] G. Suvire, P. Mercado, Dstatcom with flywheel energy storage system for wind energy applications: control design and simulation, Electric Power Systems Research 80 (3) (2010) 345-353.
  • [121] C. Abbey, G. Joos, Supercapacitor energy storage for wind energy applications, IEEE Transactions on Industry Applications 43 (3) (2007) 769-776.
  • [122] D. Jovcic, et al., High voltage direct current transmission: Converters, systems, and dc grids, CEUR Workshop Proc. 1542 (3) (2011) 33-36.
  • [123] P. Lyons, N. Wade, T. Jiang, P. Taylor, F. Hashiesh, M. Michel, D. Miller, Design and analysis of electrical energy storage demonstration projects on uk distribution networks, Applied Energy 137 (2015) 677-691.
  • [124] P. Modi, S. Singh, J. Sharma, P. Pradhan, Stability improvement of power system by decentralized energy, Advances in Energy Research (2006) 65-70.
  • [125] C. P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, F. C. Walsh, Redox flow cells for energy conversion, Journal of Power Sources 160 (1) (2006) 716-732.
  • [126] G. Celli, F. Pilo, G. Soma, D. Dal Canto, E. Pasca, A. Quadrelli, Benefit assessment of energy storage for distribution network voltage regulation, in: Integration of Renewables into the Distribution Grid, CIRED 2012 Workshop, IET, 2012, pp. 1-4.
  • [127] A. Lahyani, P. Venet, A. Guermazi, A. Troudi, Battery/supercapacitors combination in uninterruptible power supply (ups), IEEE transactions on power electronics 28 (4) (2013) 1509-1522.
  • [128] G. K. Tso, K. K. Yau, Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks, Energy 32 (9) (2007) 1761-1768.
  • [129] A. Azadeh, S. Ghaderi, S. Tarverdian, M. Saberi, Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption, Applied Mathematics and Computation 186 (2) (2007) 1731-1741.
  • [130] T. Kinjo, T. Senjyu, N. Urasaki, H. Fujita, Output levelling of renewable energy by electric double-layer capacitor applied for energy storage system, IEEE Transactions on Energy conversion 21 (1) (2006) 221-227.
  • [131] M. Korpaas, A. T. Holen, R. Hildrum, Operation and sizing of energy storage for wind power plants in a market system, International Journal of Electrical Power & Energy Systems 25 (8) (2003) 599-606.
  • [132] P. Denholm, E. Ela, B. Kirby, M. Milligan, The role of energy storage with renewable electricity generation, Contract NREL (2010) 1-53.
  • [133] D. Rastler, Electricity energy storage technology options: a white paper primer on applications, costs and benefits, Electric Power Research Institute, 2010.
  • [134] D.-J. Lee, L. Wang, Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part i: Time-domain simulations, IEEE Transactions on Energy Conversion 23 (1) (2008) 311-320.
  • [135] P. Mercier, R. Cherkaoui, A. Oudalov, Optimizing a battery energy storage system for frequency control application in an isolated power system, IEEE Transactions on Power Systems 24 (3) (2009) 1469-1477.
  • [136] S. J. Kazempour, M. Hosseinpour, M. P. Moghaddam, Self-scheduling of a joint hydro and pumped-storage plants in energy, spinning reserve and regulation markets, in: Power & Energy Society General Meeting, 2009. PES’09. IEEE, IEEE, 2009, pp. 1-8.
  • [137] B. Dursun, B. Alboyaci, The contribution of wind-hydro pumped storage systems in meeting turkey’s electric energy demand, Renewable and Sustainable Energy Reviews 14 (7) (2010) 1979-1988.
  • [138] J. P. Torreglosa, P. Garcia, L. M. Fernandez, F. Jurado, Predictive control for the energy management of a fuel-cell-battery-supercapacitor tramway, IEEE Transactions on Industrial Informatics 10 (1) (2014) 276-285.
  • [139] S. Succar, R. H. Williams, et al., Compressed air energy storage: theory, resources, and applications for wind power, Princeton environmental institute report 8.
  • [140] M. Klafki and E. S. K. Gmbh, "Status and Technical Challenges of Advanced Compressed Air Energy Storage (CAES) Technology Motivation for Large-Scale Energy Storage", pp. 1-8, 2009.
  • [141] L. Xing and W. Jihong, "Overview of Current Development on Compressed Air Energy Storage" pp. 275-284, 2013.
  • [142] A. Kyriakopoulos, D. O’Sullivan, J. G. Hayes, J. Griffiths, M. G. Egan, Kinetic energy storage for high reliability power supply back-up, in: Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, IEEE, 2007, pp. 1158-1163.
  • [143] K. Gandhi, Storage of electrical energy, Indian Chemical Engineer 52 (1) (2010) 57-75.
  • [144] M. Kapsali, J. Anagnostopoulos, J. Kaldellis, Wind powered pumpedhydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives, Applied energy 99 (2012) 430-444.
  • [145] P. D. Brown, J. P. Lopes, M. A. Matos, Optimization of pumped storage capacity in an isolated power system with large renewable penetration, IEEE Transactions on Power systems 23 (2) (2008) 523-531.
  • [146] R. Dufo-López, J. L. Bernal-Agustín, J. A. Domínguez-Navarro, Generation management using batteries in wind farms: Economical and technical analysis for spain, Energy policy 37 (1) (2009) 126-139.
  • [147] M. Kapsali, J. Kaldellis, Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms, Applied energy 87 (11) (2010) 3475-3485.
  • [148] S. Papaefthimiou, E. Karamanou, S. Papathanassiou, M. Papadopoulos, Operating policies for wind-pumped storage hybrid power stations in island grids, IET Renewable Power Generation 3 (3) (2009) 293-307.
  • [149] B. P. Roberts and S. Member, "Utility Energy Storage Applications" vol. 11, no. 3, pp. 1-2, 2008.
  • [150] S. V. Papaefthymiou, E. G. Karamanou, S. A. Papathanassiou, M. P. Papadopoulos, A wind-hydro-pumped storage station leading to high res penetration in the autonomous island system of ikaria, IEEE Transactions on Sustainable Energy 1 (3) (2010) 163-172.
  • [151] E. D. Castronuovo, J. A. P. Lopes, Optimal operation and hydro storage sizing of a wind-hydro power plant, International Journal of Electrical Power & Energy Systems 26 (10) (2004) 771-778.
  • [152] R. Walawalkar, J. Apt, R. Mancini, Economics of electric energy storage for energy arbitrage and regulation in new york, Energy Policy 35 (4) (2007) 2558-2568.
  • [153] J. Anagnostopoulos, D. Papantonis, Simulation and size optimization of a pumped-storage power plant for the recovery of wind-farms rejected energy, Renewable Energy 33 (7) (2008) 1685-1694.
  • [154] D. Zafirakis, J. Kaldellis, Economic evaluation of the dual mode caes solution for increased wind energy contribution in autonomous island networks, Energy policy 37 (5) (2009) 1958-1969.
  • [155] P. Denholm, R. Sioshansi, The value of compressed air energy storage with wind in transmission-constrained electric power systems, Energy Policy 37 (8) (2009) 3149-3158.
  • [156] P. Denholm, R. M. Margolis, Evaluating the limits of solar photovoltaics (pv) in electric power systems utilizing energy storage and other enabling technologies, Energy Policy 35 (9) (2007) 4424-4433.
  • [157] C. for E. S. Deloitte, "Electricity Storage Technologies , impacts , and prospects" no. September, 2015.
  • [158] B. Nyamdash, E. Denny, M. O’Malley, The viability of balancing wind generation with large scale energy storage, Energy Policy 38 (11) (2010) 7200-7208.
  • [159] N. J. Schenk, H. C. Moll, J. Potting, R. M. Benders, Wind energy, electricity, and hydrogen in the netherlands, Energy 32 (10) (2007) 1960-1971.
  • [160] C. Bueno, J. A. Carta, Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the canary islands, Renewable and Sustainable Energy Reviews 10 (4) (2006) 312-340.
  • [161] A. O. Converse, Seasonal energy storage in a renewable energy system, Proceedings of the IEEE 100 (2) (2012) 401-409.
  • [162] M. Little, M. Thomson, D. Infield, Electrical integration of renewable energy into stand-alone power supplies incorporating hydrogen storage, International Journal of Hydrogen Energy 32 (10) (2007) 1582-1588.
  • [163] J. Kaldellis, M. Kapsali, K. Kavadias, Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks, Applied energy 87 (8) (2010) 2427-2437.
  • [164] F. Rafik, H. Gualous, R. Gallay, A. Crausaz, A. Berthon, Frequency, thermal and voltage supercapacitor characterization and modeling, Journal of power sources 165 (2) (2007) 928-934.
  • [165] S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews 16 (1) (2012) 981-989.
  • [166] S. C. Smith, P. Sen, B. Kroposki, Advancement of energy storage devices and applications in electrical power system, in: Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, IEEE, 2008, pp. 1-8.
  • [167] B. Zakeri, S. Syri, Electrical energy storage systems: A comparative life cycle cost analysis, Renewable and Sustainable Energy Reviews 42 (2015) 569-596.
  • [168] O. H. Anuta, P. Taylor, D. Jones, T. McEntee, N. Wade, An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage, Renewable and sustainable energy reviews 38 (2014) 489-508.
  • [169] G. Allan, I. Eromenko, M. Gilmartin, I. Kockar, P. McGregor, The economics of distributed energy generation: A literature review, Renewable and Sustainable Energy Reviews 42 (2015) 543-556.
  • [170] A. Poullikkas, Sustainable options for electric vehicle technologies, Renewable and Sustainable Energy Reviews 41 (2015) 1277-1287.
  • [171] E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles, Journal of Power Sources 168 (1) (2007) 2-11.
  • [172] M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi, Power quality impacts of high-penetration electric vehicle stations and renewable energy-based generators on power distribution systems, Measurement 46 (8) (2013) 2423-2434.
  • [173] M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi, Power quality impact of renewable energy based generators and electric vehicles on distribution systems, Procedia Technology 11 (2013) 11-17.
  • [174] D. B. Richardson, Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration, Renewable and Sustainable Energy Reviews 19 (2013) 247-254.
  • [175] A. Ipakchi, F. Albuyeh, Grid of the future, IEEE power and energy magazine 7 (2) (2009) 52-62.
  • [176] X. Tan, Q. Li, H. Wang, Advances and trends of energy storage technology in microgrid, International Journal of Electrical Power & Energy Systems 44 (1) (2013) 179-191.
  • [177] P. Palensky, D. Dietrich, Demand side management: Demand response, intelligent energy systems, and smart loads, IEEE transactions on industrial informatics 7 (3) (2011) 381-388.
  • [178] I. Dincer, Green methods for hydrogen production, International Journal of hydrogen energy 37 (2) (2012) 1954-1971.
  • [179] B. Ewan, R. Allen, A figure of merit assessment of the routes to hydrogen, International Journal of Hydrogen Energy 30 (8) (2005) 809-819.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec887bb-b9c6-44b5-bd9b-f99b8dcb7dd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.