PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chalcopyrite leaching by amino acid solutions in the presence of hydrogen peroxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is demonstrated that amino acids such as glycine, betaine, and lysine may be applied as selective copper leaching agents in the process of hydrochemical oxidation of chalcopyrite at atmospheric pressure and in the temperature range 25÷65 °C. The advantage of the proposed method is its relative environmental friendliness. Solid samples of the initial mineral and leached chalcopyrite residues were analyzed by X-ray diffraction analysis, and Mössbauer and Raman spectroscopy. The results of the atomic absorption analysis showed that copper's extraction efficiency increased when the experiment's duration was raised and when the process temperature was higher. The leaching ability of amino acids was evaluated by the specific leaching rate of chalcopyrite in these reagents. Amino acid leaching was thought to be mainly due to the complexation of copper (II) glycinates, copper (II) betainates and copper (II) lysinates. This reaction can be enhanced by adding hydrogen peroxide to the system as an oxidant. It was determined that glycine was more effective as a leaching agent than betaine and lysine. Based on experimental data, it was assumed that the most possible mechanism is selective copper leaching due to the formation of chalcopyrite-based solid solution Cu1-XFeS2.
Słowa kluczowe
Rocznik
Strony
art. no. 157067
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
  • Institute of Solid State Chemistry and Mechanochemistry of SB RAS, Novosibirsk 630128, Russia
  • Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
  • Institute of Solid State Chemistry and Mechanochemistry of SB RAS, Novosibirsk 630128, Russia
Bibliografia
  • ALBOOM, A.V., DE RESENDE, V.G., DE GRAVE, E., GÓMEZ, J.A.M., 2009. Hyperfine interactions in szomolnokite (FeSO4•H2O). Journal of Molecular Structure. 924-926, 448-456.
  • AZADI, M.R., KARRECH, A., ELCHALAKANI, M., ATTAR, M., 2019. Microfluidic study of sustainable gold leaching using glycine solution. Hydrometallurgy. 185, 186-193.
  • BEIZA, L., QUEZADA, V., MELO, E., VALENZUELA, G., 2019. Electrochemical behaviour of chalcopyrite in chloride solutions. Metals. 9(1), 1-12.
  • BHARGAVA, S.K., POWNCEBY, M.I., RAM, R., 2016. Hydrometallurgy. Metals. 6(5), 17-19.
  • CARLESI, C., HARRIS, R.C., ABBOTT, A.P., JENKIN, G.R.T., 2022. Chemical Dissolution of Chalcopyrite Concentrate in Choline Chloride Ethylene Glycol Deep Eutectic Solvent. Minerals. 12(1), 65.
  • CHOUBEY, P.K., LEE, J., KIM, M., KIM, H-S., 2018. Conversion of chalcopyrite to copper oxide in hypochlorite solution for selective leaching of copper in dilute sulfuric acid solution. Hydrometallurgy. 178, 224-230.
  • DOĞAN, A., KÖSEOǦLU, F., KILIÇ, E., 2001. The Stability Constants of Copper(II) Complexes with Some -Amino Acids in Dioxan–Water Mixtures. Analytical Biochemistry. 295, 237-239.
  • DOLIVO-DOBROVOL’SKII, V.V., 1963. Some laws of the dissolution process of a dispersed solid. Journal of Mining Institute. 42(3), 3-24.
  • EKSTEEN, J.J., ORABY, E.A., TANDA, B.C., 2017. A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Minerals Engineering. 108, 53–66.
  • GHOMI, M.A., MOZAMMEL, M., MOGHANNI, H., SHAHKAR, L., 2019. Atmospheric leaching of chalcopyrite in the presence of some polar organic reagents: A comparative study and optimization. Hydrometallurgy. 189, 105120.
  • KARTAL, M., XIA, F., RALPH, D., RICKARD, W.D.A., RENARD, F., LI, W., 2020. Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation. Hydrometallurgy. 191, 105192.
  • KIM, J.S., PARK, J.S., LIM, J.C., 2009. Measurement of Isoelectric Point of Betaine Zwitterionic Surfactant by QCM (Quartz Crystal Microbalance). Korean Chemical Engineering Research. 47(1), 31–37.
  • KITADAI, N., YOKOYAMA, T., NAKASHIMA, S., 2009. ATR-IR spectroscopic study of L-lysine adsorption on amorphous silica. Journal of Colloid and Interface Science. 329(1), 31-37.
  • LIANG, C., XIA, J., NIE, Z., LUO, X., 2013. Comparison of electrochemical behaviors of chalcopyrite, bornite, chalcocite and covellite in 9K medium. Advanced Materials Research. 634–638(1), 68–71
  • MARTÍNEZ-GÓMEZ, V.J., FUENTES-ACEITUNO, J.C., PÉREZ-GARIBAY, R., LEE, JAE-CHUN., 2018. A study of the electro-assisted reductive leaching of a chalcopyrite concentrate in HCl solutions. Part I: Kinetic behavior and nature of the chalcopyrite reduction. Hydrometallurgy. 181, 195–205.
  • MOROZOW, A.R., RODIONOW, A.I., KAMENCHUK, I.N., 2014. Kinetics of decomposition of hydrogen peroxide In water. Advances in chemistry and chemical technology. 28(5), 46-49.
  • MOYO, T., PETERSEN, J., NICOL, M.J., 2018. The electrochemistry and kinetics of the oxidative dissolution of chalcopyrite in ammoniacal solutions: Part I – Anodic Reactions. Hydrometallurgy. 182, 97–103.
  • MOYO, T., PETERSEN, J., NICOL, M.J., 2019. The electrochemistry and kinetics of the oxidative dissolution of chalcopyrite in ammoniacal solutions. Part II – Cathodic reactions. Hydrometallurgy. 184, 67–74.
  • O’CONNOR, G.M., LEPKOVA, K., EKSTEEN, J.J., ORABY, E.A., 2018a. Electrochemical behaviour and surface analysis of chalcopyrite in alkaline glycine solutions. Hydrometallurgy. 182, 32–43.
  • O’CONNOR, G.M., LEPKOVA, K., EKSTEEN, J.J., ORABY, E.A., 2018b. Electrochemical behaviour of copper in alkaline glycine solutions. Hydrometallurgy. 181, 221–229.
  • OLVERA, O.G., REBOLLEDO, M., MORA, N., DIXON, D.G., ASSELIN, E., 2018. Electrochemical dissolution of chalcopyrite in the presence of thiourea and formamidine disulfide. Hydrometallurgy. 179, 110–117.
  • OLVERA, O.G., VALENZUELA, P., DIXON, D.G., ASSELIN, E., 2017. Effect of cysteine on the electrochemical dissolution of chalcopyrite. Hydrometallurgy. 169, 552-563.
  • ORABY, E.A., EKSTEEN, J.J., TANDA, B.C., 2017. Gold and copper leaching from gold-copper ores and concentrates Rusing a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy. 169, 339-345.
  • PANDA, S., SANJAY, K., SUKLA, L.B., PRADHAN, N., SUBBAIAH, T., MISHRA, B.K., PRASAD, M.S.R., RAY, S.K., 2012. Insights into heap bioleaching of low grade chalcopyrite ores – A pilot scale study. Hydrometallurgy. 125–126, 157–165.
  • PĘDZIWIATR, P., MIKOŁAJCZYK, F., ZAWADZKI, D., MIKOŁAJCZYK, K., BEDKA, A., 2018. Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts. Acta Innovations. 26, 45–52.
  • PERELYGIN, YU.P., JASKULA, M., KOLTSHUGINA, I.G., 2018. Some Remarks on the Meaning of Isoelectric Point of Glycine. Jordan Journal of Physics. 11(1), 1-3.
  • RUIZ-SÁNCHEZ, Á., LAPIDUS, G.T., 2017. Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media. Hydrometallurgy. 169, 192–200.
  • SAFARZADEH, M.S., LI, J., MOATS, M.S., MILLER, J.D., 2012. The stability of selected sulfide minerals in sulfuric acid and acidic thiocyanate solutions. Electrochimica Acta. 78, 133–138.
  • SENKALE, S., INDRIS, S., ETTER, M., BENSCH, W., 2021. CuFeS2 as a Very Stable High-Capacity Anode Material for Sodium-Ion Batteries: A Multimethod Approach for Elucidation of the Complex Reaction Mechanisms during Discharge and Charge Processes. ACS Applied Materials and Interfaces. 13(22), 26034–26045.
  • SHEIKHIAN, L., AKHOND, M., ABSALAN, G., 2020. Specification of Zwitterionic or Non-Zwitterionic Structures of Amphoteric Compounds by Using Ionic Liquids. Acta Chimica Slovenica. 67(2), 415-420.
  • SHIN, D., AHN, J., LEE, J., 2019. Kinetic study of copper leaching from chalcopyrite concentrate in alkaline glycine solution. Hydrometallurgy. 183, 71–78.
  • SOLÍS MARCIAL, O.J., NÁJERA BASTIDA, A., BAÑUELOS, J.E., VALDÉS MARTÍNEZ, O.U., LUEVANO, L.A., SERRANO ROSALES, B., 2019. Chalcopyrite Leaching Kinetics in the Presence of Methanol. International Journal of Chemical Reactor Engineering. 17(12), 1–10.
  • SOLIS-MARCÍAL, O.J., LAPIDUS, G.T., 2013. Improvement of chalcopyrite dissolution in acid media using polar organic solvents. Hydrometallurgy. 131–132, 120–126.
  • TIBURCIO-MUNIVE, G., SALAZAR-CAMPOY, M.M., VALENZUELA-GARCÍA, J.L., HERNÁNDEZ-NEGRETE, O., VÁZQUEZ-VÁZQUEZ, V., 2020. Dissolution of Silver and Gold with Sodium Hypochlorite and Hydrochloric Acid in Refractory Minerals (Mangano-Argentiferous). Mining, Metallurgy and Exploration. 37(4), 1213–1220.
  • WARREN, G.W., WADSWORTH, M.E., 1984. The electrochemical oxidation of chalcopyrite in ammoniacal solutions. Metallurgical Transactions B. 15 (2), 289-297.
  • YAZICI, E.Y., DEVECI, H., 2010. Factors affecting decomposition of hydrogen peroxide. Proceedings of the XIIth international mineral processing symposium. 609-616.
  • YOO, K., KIM, S., LEE J., ITO, M., TSUNEKAWA, M., HIROYOSHI, N., 2010. Effect of chloride ions on leaching rate of chalcopyrite. Minerals Engineering. 23(6), 471–477.
  • ZHAO, H., WANG, J., GAN, X., QIN, W., HU, M., QIU, G., 2015. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions. International Journal of Minerals, Metallurgy and Materials. 22(8), 777–787.
  • ZHAO, H., ZHANG, Y., ZHANG, X., QIAN, L., SUN, M., YANG, Y., ZHANG, Y., WANG, J., KIM, H., QIU, G., 2019. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Minerals Engineering. 136(932), 140–154.
  • ZHENG, W., XU, S., RADISIC, D., STOKES, S., LI, X., BOWEN, K.H., 2005. On the interaction of electrons with betaine zwitterions. The Journal of Chemical Physics. 122(10), 1–4
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec8163e-4faf-4d2e-b89a-2f199ce6e99e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.