PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Relationship among Dissolved Inorganic Phosphate, Particulate Inorganic Phosphate, and Chlorophyll-a in Different Seasons in the Coastal Seas of Semarang and Jepara

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The speciation of particulate inorganic phosphate (PIP) in waters is still rarely studied, unlike the dissolved inorganic phosphate (DIP) which is often used in the assessment of the water quality parameters and their effect on the presence of chlorophyll a. This research aimed at determinig the relationship between DIP and PIP and its effect on the concentration of chlorophyll-a. This research was conducted in the waters of Semarang and Jepara, in different seasons (Rainy and dry). Speciation from PIP was obtained through an extraction process using 1 M HCL and continued with phosphate analysis using the molybdenum blue method, as in the DIP analysis. The linear model was used to find an equation and determine the variables that affect chlorophyll a. Our results showed that the distribution patterns of DIP, PIP and Chlorophyll-a have different patterns in the two study areas and different seasons. The concentration of DIP is always high in the Semarang waters, and is followed by a high chlorophyll-a response. A different pattern was found in the Jepara waters, where the chlorophyll-a response is high in the east monsoon. The relationship of Chl-a to DIP was very significant in the west season in the waters of Semarang and the Jepara region in the east season (p < 0.05). The relationship of chlorophyll a to DIP in the Semarang and Jepara waters produced an equation, Chl a = -56.565 + 76.672 (DIP) with a coefficient of determination R2 = 0.478, at a significant level (p) = 0.004 and Chl a = -25.844 + 68.827 (DIP) with value of R2 = 0.421 at a significance level of p = 0.007, respectively.
Rocznik
Strony
135--142
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Doctoral Program of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
  • Center for Coastal Rehabilitation and Mitigation Studies, Diponegoro University, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Bibliografia
  • 1. Abell, J.M., Ozkundakci, D., Hamilton, D.P., Jones, J. R. 2012. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: A global study. Fundam. Appl. Limnol. 181, 1-14.
  • 2. Al-Enezi., E., B. Bockelmann-Evans, R. Falcone. 2016. Phosphorus adsorption/desorption processes of estuarine sediment: A case study – Loughor Estuary, UK. Arab J Geosci 9, 200. DOI 10.1007/s12517-015-2014-1
  • 3. Aspila, K.I., H. Agemian, & A.S.Y. Chau. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst. 1976, 101, 187–197. DOI:10.1039/AN9760100187.
  • 4. APHA. 1992. Standard Method for the Examination of Water and Wastewater. 18th edition. Washington, pp. 252.
  • 5. Balali, S., S.A. Hoseini, R. Ghorbani & H. Kordi. 2013. Relationships between Nutrients and Chlorophyll-a Concentration in the International Alma Gol Wetland, Iran. J Aquac Res Development, 4(3), 1-5. DOI: 10.4172/2155-9546.1000173
  • 6. Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoler, R. 2016. Mediterranean Ocean Colour Chlorophyll Trends. PLoS ONE, 11(6), e0155756. https://doi.org/10.1371/journal.pone.0155756
  • 7. Correll, D.L. 1998. The role of phosphorus in the eutrophication of receiving waters: A review. Journal of environmental quality, 27, 261–266.
  • 8. Davidson, K., R.J. Gowen, P. J. Harrison, L.E. Fleming, P. Hoagland, G. Moschon. 2014. Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206-216. doi.org/10.1016/j.jenvman.2014.07.002
  • 9. Deborde, J., P. Anschutz, G. Chaillou, H. Etcheber, M. Commarieu, P. Lecroart, and G. Abril. 2007. The dynamics of phosphorus in turbid estuarine systems: Example of the Gironde estuary (France). Limnol. Oceanogr., 52(2), 2007, 862–872
  • 10. Dillon P.J., Rigler F.H. (1974) The phosphorus-chlorophyll relationships in lakes. Limnol Oceanogr, 19, 767-773.
  • 11. Dürr H.H., Laruelle G.G., van Kempen C.M., Slomp C.P., Meybeck M. and Middelkoop H. 2011. Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans. Estuary. Coast., 34, 441–458.
  • 12. Froelich P. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol.Oceanogr, 33(4), 649–668.
  • 13. Jeffrey S.W. & Humphrey G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol, 167, 191-194.
  • 14. Jensen H.S., Bendixen T. & Andersen F.Ø. 2006. Transformation of particle-bound phosphorus at the land-sea interface in a Danish estuary. Water, Air, and Soil Pollution: Focus, 6, 547–555.
  • 15. Jones J.R., Bachmann R.W. 1976. Prediction of Phosphorus and Chlorophyll Levels in Lakes. J Water Pollut Control Fed, 48, 2176-2182.
  • 16. Labry C., A. Youenou, D. Delmas & Michelon P. 2013. Addressing the measurement of particulate organic and inorganic phosphorus in estuarine and coastal waters. Continental Shelf Research, 60, 28–37.
  • 17. Li, R., J. Xu, X. Li, Z. Shi & P.J. Harrison. 2017. Spatiotemporal Variability in Phosphorus Species in the Pearl River Estuary: Influence of the River Discharge. Scientific Reports, 7(1364): 1-13. DOI:10.1038/s41598-017-13924-w.
  • 18. Magumba, D., A. Maruyama, M. Takagaki, A. Kato and M. Kikuchi. 2013. Relationships between Chlorophyll-a, Phosphorus and Nitrogen as Fundamentals for Controlling Phytoplankton Biomass in Lakes. Environ. Control Biol., 51(4), 179185.
  • 19. Maslukah, L., Wulandari, S.Y., Prasetyawan, I.B., & Muslim. 2018. The Distributions Of N, P Nutrients and Its Relations with Chlorophyll-a: Case Study in Serang And Wiso Estuary, Jepara, Indonesia. Asian Jr. of Microbiol. Biotech. Env. Sc. 20(3), 123-129.
  • 20. Maslukah, L., Zainuri, M., Wirasatriya, A., and Salma, U. 2019. Spatial Distribution of Chlorophyll-a and Its Relationship with Dissolved Inorganic Phosphate Influenced by Rivers in the North Coast of Java. Journal Ecological of Engineering, 20(7), 18–25.
  • 21. Paudel, B., Montagna, P.A and Adams, L. 2019. The relationship between suspended solids and nutrients with variable hydrologic flow regimes. Regional Studies in Marine Science, 29, 1-9.
  • 22. Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Hydrobiologia, 62, 1-28.
  • 23. Shabrina, B., Maslukah, L., and Wulandari, S.Y. 2018. Chlorophyll-a Distribution and Its Relation with Current Pattern in Northern Waters of Central Java. Omni-Akuatika, 14 (1), 69–76.
  • 24. Siregar, V. & A.F. Koropitan. 2016. Land-use change and its impact on marine primary production in Semarang Waters The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring. Procedia Environmental Sciences, 33, 520–531.
  • 25. Smith, J., M.A., Burford, A.T. Revill, R.R., Haese, and J. Fortune. 2012. Effect of Nutrient Loading on Biogeochemical Processes in Tropical Tidal Creeks. Biogeochemistry, 108, 359–380.
  • 26. Soliman, N.F, G.M. El-Zokm, M.A Okbah. 2017. Evaluation of phosphorus bioavailability in El Mex Bay and Lake Mariut sediments. International Journal of Sediment Research, 32, 432–441. DOI: 10.1016/j.ijsrc.2017.05.006
  • 27. Søndergaard, M, S.E. Larsen, T.B. Jørgensen, E. Jeppesen. 2011. Using chlorophyll-a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11, 1403–1412.
  • 28. Subiyanto, S. 2017. Remote Sensing and Water Quality Indicators in the West Flood Canal Semarang City: Spatio-temporal Structures of Lansat-8 Derived Chlorophyll-a and Total Suspended Solids. IOP Conf. Series: Earth and Environmental Science, 98, 1–10.
  • 29. Trommer, G., A. Leynaert, CE .C. Klein, A. Naegelen and B. Beker. 2013. Phytoplankton phosphorus limitation in a North Atlantic coastal ecosystem not predicted by the nutrient load. J. Plankton Res. (2013) 35(6): 1207–1219. First published online July 23, 2013 doi:10.1093/plankt/fbt070.
  • 30. William, L., Marlon, K.W., Lewis, R. and Harrison, W.G. 2010. Multiscalarity of the nutrient–chlorophyll relationship in coastal phytoplankton. Estuaries and Coasts. 33, 440–447.
  • 31. Wirasatriya, A., Prasetyawan, I. B., Triyono, C.D., Muslim, and Maslukah, L. (2018). Effect of ENSO on the Variability of SST and Chlorophyll-A in the Java Sea. IOP Conference Series: Earth and Environmental Science 116(1).
  • 32. Yule, C.M., Boyero, L., and Marchant, R. 2010. Effects of Sediment Pollution on Food Webs in a Tropical River (Borneo, Indonesia). Mar. Freshwater Res. 61, 204–213.
  • 33. Zhou, W., X. Yuan, A. Long, H. Huang & W. Yue. 2014. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting water of Hong Kong. Environ Monit Assess. 186, 1705– 1718. DOI 10.1007/s10661-013-3487-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec6f79b-36ee-4a8f-bb22-8ca0e4a4ce9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.