PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Model and Numerical Analysis of Hardening Phenomena for Hot-work Tool Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the complex model of hardening of the hot-work tool steel is presented. Model of estimation of phase fractions and their kinetics is based on the continuous cooling diagram (CCT). Phase fractions which occur during the continuous heating and cooling (austenite, pearlite or bainite) are described by Johnson-Mehl-Avrami-Kolmogorov (JMAK) formula. To determine of the formed martensite the modified Koistinen-Marburger (KM) equation is used. The stresses and strains are calculated by the solution of equilibrium equations in the rate form. Model takes into account the thermal, structural, plastic strains and transformation plasticity. The thermophysical properties occurring in the constitutive relations are dependent on phase compositions and temperature. To calculate the plastic strains the Huber-Mises plasticity condition with isotopic hardening is used. Whereas to determine transformations induced plasticity the Leblond model is applied. The numerical analysis of phase compositions and residual stresses in the hot-work steel element is considered.
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Kang, S.H. & Im, Y.T. (2007). Thermo-elesto-plastic finite element analysis of quenching process of carbon steel. Intenational Journal of Mechanical Sciences. 49. 13-16.
  • [2] Kang, S.H. & Im, Y.T. (2007). Three-dimensional thermoelestic-plastic finite element modeling of quenching process of plain carbon steel in couole with phase transformation. Journal of Materials Processing Technology. 192-193. 381-390.
  • [3] Kulawik, A. & Bokota, A. (2011). Modelling of heat treatment of steel with the movement of coolant Archives of Metallurgy and Materials. 56(2). 345-357.
  • [4] Ju, D.Y., Zhang, W.M. & Zhang, Y. (2006). Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process, Materials Science and Engineering A. 438-440, 246-250.
  • [5] Coret, M. & Combescure, A. (2002). A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels). International Journal of Mechanical Sciences. 44. 1947-1963.
  • [6] Bokota, A. & Kulawik, A. (2007). Model and numerical analysis of hardening process phenomena for mediumcarbon steel. Archives of Metallurgy and Materials. 52(2). 337-346.
  • [7] Huiping, L., Guoqun, Z., Shanting, N. & Chuanzhen, H. (2007). FEM simulation of quenching process and experimental verification of of simulation results. Material Science and Engineering A. 452-453, 705-714.
  • [8] Oliveira, W.P, Savi, M.A., Pacheco, P.M.C.L. & Souza, L.F.G. (2010). Thermomechanical analysis of steel cylinders with diffusional and non-diffusional phase transformations. Mechanics of Materials. 42, 31-43.
  • [9] Silva, E.P., Pacheco, P.M.C.L. & Savi, M.A. (2004). On the thermo-mechanical coupling in austenite-martensite phase transformation related to the quenching process. International Journal of Solids and Structures. 41, 1139-1155.
  • [10] Serejzadeh, S. (2004). Modeling of temperature history and phase transformation during cooling of steel. Journal of Processing Technology. 146. 311-317.
  • [11] Taleb, L. & Sidoroff, F. (2003). A micromechanical modelling of the Greenwood-Johnson mechanism in transformation induced plasticity. International Journal of Plasticity. 19. 1821-1842.
  • [12] Cherkaoui, M., Berveiller, M. & Sabar, H. (1998). Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. International Journal of Plasticity. 14(7). 597-626.
  • [13] Zienkiewicz, O.C. Taylor, R.L. (2000). The finite element method. vol. 1,2,3. Butterworth-Heinemann, Fifth edition.
  • [14] Warmarbeitsstahl Hot Work Tool Steel, BOHLER W360, Iso Bloc, www.bohler-edelstahl.com.
  • [15] Orlich, J, Rose, A., Wiest, P. (1973). Atlas zur Wärmebehandlung von Stähle, III Zeit Temperatur Autenitisierung Schaubilder, Verlag Stahleisen MBH, Düsseldorf.
  • [16] Bokota, A. & Domański, T. (2007). Numerical analysis of thermo-mechanical phenomena of hardening process of elements made of carbon steel C80U. Archives of Metallurgy and Materials. 52(2), 277-288.
  • [17] Caddemi, S. & Martin, J.B. (1991). Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis. Int. J. Numer. Meth. Eng. 31. 177-191.
  • [18] Jasiński, J. (2003). Influence of fluidized bed on diffusional processes of saturation of steel surface layer. Częstochowa: Inżynieria Materiałowa Nr 6, Wydawnictwo WIPMiFS, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec67921-c246-4b7c-ac77-1d39a563a36d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.