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Abstract 
 
In the paper the complex model of hardening of the hot-work tool steel is presented. Model of estimation of phase fractions and their 
kinetics is based on the continuous cooling diagram (CCT). Phase fractions which occur during the continuous heating and cooling 
(austenite, pearlite or bainite) are described by Johnson-Mehl-Avrami-Kolmogorov (JMAK) formula. To determine of the formed 
martensite the modified Koistinen-Marburger (KM) equation is used. The stresses and strains are calculated by the solution of equilibrium 
equations in the rate form. Model takes into account the thermal, structural, plastic strains and transformation plasticity. The 
thermophysical properties occurring in the constitutive relations are dependent on phase compositions and temperature. To calculate the 
plastic strains the Huber-Mises plasticity condition with isotopic hardening is used. Whereas to determine transformations induced 
plasticity the Leblond model is applied. The numerical analysis of phase compositions and residual stresses in the hot-work steel element 
is considered. 
 
Keywords: Heat treatment, Hot-work tool steel W360, Phase transformation, Stresses, Thermo-elastic-plastic finite element analysis  
 
 
 

1. Introduction 
 

The heat treatment of hot-work tool steel is a technological 
process, in which thermal phenomena, phase transformations and 
mechanical phenomena are dominant. Models, which describe 
processes mentioned above, don’t take into consideration the 
many important aspects. As a result of the complexity of 
phenomenon of heat treatment process, there are many 
mathematical and numerical difficulties in its modelling. For this 
reason there hasn't a model which include phenomenon 
accompanying heat treatment and hardening [1-4]. 

The correct prediction of the final properties of hardening 
element is possible after defining the type and the property of the 

nascent microstructure of the steel element in the process of 
heating, and then in the quenching. Recently, in many researches 
have been made the analysis of quenching process with using the 
finite element simulation technique [2,3,5-7].  

In this paper the numerical model of phase transformation 
such as JMAK model for the diffusional transformation and 
modified KM model for the diffusionless transformation were 
employed to investigate a phase fractions during the heating and 
quenching process. [2,4,8]. 

Representing of mechanical phenomenon in process of heat 
treatment are mainly stress and their determinations. This values 
are depend on accuracy computing temperature fields and on 
kinetics of phase transformations in solid state. The kinetics of 
phase transformations has significant impact on temporary 
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stresses and then on residual stresses [2,5,6,9]. Numerical 
simulations of steel hardening process need therefore to include 
thermal, plastic, and structural strains and transformations 
induced plasticity. Inclusion of transformation plasticity has a 
influence on distributions and extreme values of stresses in the 
simulation of the hardening [2,5,10-12]. 

To implement this type of algorithms one usually applies the 
FEM, which makes it possible to take into account both 
nonlinearities and inhomogeneity of thermally processed material 
[2,6,7,13]. 
 
 

2. Mathematical and numerical models 
 

The fields of temperature are determined from heat transfer 
equation: 

 

    txTTQ
t
TCT v ,,graddiv  



  (1) 

 
where =(T) is the heat conductivity coefficient, C=C(T) is an 
effective heat capacity, Qv is intensity of internal sources in which 
the heat of phase transformations are taken into account, x are the 
coordinates and t is time. 

Superficial heating and cooling are realised in the model by the 
Newton boundary condition with convection coefficient dependent 
on temperature [2,3,6]: 
 

  




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 TTTq
n
T
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where (T) is the heat transfer coefficient,  is surface, from 
which the heat is taken over, T is temperature of the medium 
rounded. 

In the model of phase transformations the continuous cooling 
diagram (CCT) is used (Fig. 1) [14,15]. The phase fractions, 
which transformed during continuous heating and cooling, 
austenite, pearlite or bainite are determined in model by JMAK 
formula. The fraction of the formed martensite is calculated using 
the modified KM formula [2,6,16]: 
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 
%
  is maximal phase fraction for established cooling rate 

estimated on the basis of CCT diagram, b(ts,tf) and n(ts,tf) are 
coefficients calculated assuming the initial fraction (s(ts)=0.01) 
and the maximum value of fraction (f(tf)=0.99), A

~  is the 
fraction of forming austenite after heating, m is a constant from 
experiment; for considered steel m = 3.5, the start temperature of 

martensite transformation amount Ms=548 K, and final 
temperature of  transformation is equal Mf=123 K [14,16]. 

Latent heat, which was generated due to phase 
transformations, caused the increase of the temperature of the  
treated material. This internal heat source could be taken into 
account by enthalpy changes. Therefore, the following enthalpy 
changes for the diffusional and diffusionless transformations were 
used ([J/m3]) [2,4,6,16]:  
 

666 10800,10630,10314  PMB HHH  (4) 
 
where HB, HM and HP indicate the enthalpy changes during 
austenite-bainite, austenite-martensite and austenite-pearlite 
transformations, respectively.  
 

 
Fig. 1. The Time-Temperature-Transformation graph (CCT) for 

tools steel W360 [8,9]  
 

Heat of phase transformations is taken account by the 
volumetric heat source in the conductivity equation (1) and is 
calculated with the formula [6,16] 
 

5...2,   kHQQQ
k

kk
k

k
phv kk    (5) 

 
where Hk is volumetric heat (enthalpy) k- phase transformations, 

k  is the rate of change k- phase fraction. 
 

 
Fig. 2. Simulated dilatometric curves (see Fig. 1) 
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For the examined steel, values of thermal expansion 
coefficients and isotropic structural strains of each micro-
constituents were determined. They equal: 22, 12.5, 12.5 and 14.7 
(10-6) [1/K] and 1.8, 6.0, 8.5 and 2.53 (10-3) for austenite, 
bainite, martensite and pearlite respectively [2,6,16]. 

The example of the results of the simulations comparisons are 
presented the figure 2, the kinetic of transformations established 
cooling rate (the average cooling rate in the range of 800-500oC 
[14]) are presented on the figure 3.  
 

 
Fig. 3. The kinetic of transformations for established cooling rate  

 
The simulated dilatometric curves were obtained by solving 

the increment of the isotropic strain (Tph) in the processes of 
heating and cooling [6,16].  

Coefficient of thermal expansion of the pearlite structure for 
considered steel is assumed as dependent on temperature (see Fig. 
2), approximate this coefficient by square function [16]: 
 

  69213 10747.910419.310556.5   TTTP  (6) 
 

The equilibrium equation and constitutive relations are used 
in rate form [2,16], i.e.: 
 

  ee,,,div εDεDσσσ0σ   Ttx  (7) 
 
where =() is stress tensor, D=D(,E) is the tensor of 
material constants (isotropic materials),  is Poisson ratio, E=E(T) 
is the Young’s modulus, however eε  is tensor elastic strains. 

The equation (7) is completed by initial conditions 
 
    0ε0σ  0

e
0 ,,, txtx   (8) 

 
and boundary conditions which provide external statically 
determinate. 

Total strains in the around considered points are result of the 
sum: 
 

ptpTphe εεεεε   (9) 
 

where Tph are isotope of temperature and structural strains, tp are 
transformations plasticity, and p are plastic strains. 

For the Huber-Misses plasticity condition the flow function (f) 
have the form [2,5,7,16]: 
 

   0,, p
0   efk
k

ef TYTYf   (10) 

 
where 

ef  is effective stress, p
ef  is effective plastic strain, Y is a 

plasticized stress of material on the phase fraction () in 
temperature (T) and effective strain ( p

ef ): 
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  k

k TYYY  000
 is a yield points of material dependent on 

the temperature and the phase fraction, however  p
efHH TYY ,  is 

a surplus of the stress resulting from the material hardening. 
Using the Leblond model, completed by decreasing functions 

 1  which has been proposed by the authors of the work 
[2,5,11,12], transformations plasticity are calculated as following: 
 

   








  


03.0dla,ln13

,03.0dla,0
5

2
1

1

tp

k
k

k kk
ph
kk

k

Y




 Sε  (12) 

 
where ph

i13  are volumetric structural strains when the material is 
transformed from the initial phase „1” into the k-phase, Y1 is a 
actual yield points of phase output (in cooling process is 
austenite). 

The equations (7) are solved by using the FEM [13,16]. The 
system of equations used for numerical calculation is: 
 
           ptpeTph tttRUK    (13) 
 
where K is the element stiffness matrix, U is the vector of nodal 
displacement, R is the vector of nodal forces resulting from the 
boundary load and the inertial forces load, tTph is the vector of 
nodal forces resulting from thermal strains and structural strains, 
te is the vector of nodal forces resulting from the value change of 
Young’s modulus dependent on the temperature, tptp  is the vector 
of nodal forces resulting from plastic strains and transformation 
plasticity. 

The final displacements, strains and stress are resulting 
integration with respect to time, from initial t=t0  (see (8)) to 
actual time t, i.e. 
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The rate vectors of loads in the brackets in (13) are calculated 
only once in the increment of the load, whereas the vector tptp is 
modified in the iterative process [12]. In the iterative process of 
evaluation of plastic strains, the modified Newton-Raphson 
algorithm is used [13,17]. 
 
 

3. Example of numerical calculations 
 
To hardening simulation the axisymmetric element with 

dimensions 50100 mm was used (Fig. 4). Numerical 
simulations of hardening of the elements made of the hot-work 
tool steel W360 were performed.  
 

 
Fig. 4. The scheme of the system and boundary conditions  

 
It was assumed that hardened element has the temperature 

equal 300 K and the output structure is pearlite (divorced 
pearlite). The element was heating in the fluidized bed with 
temperature 1600 K. The thermophysical coefficients C and  
were assumed as constants: 5.34106 J/(m3K) and 32 W/(mK). 
These are the average values calculated on the basis of the data in 
the work [14]. The heat transfer coefficient of the fluidized bed 
assumed constant (independent of temperature) and equal 2400 
W/(m2K). On the front surface of heated element the heat transfer 
coefficient had the value 1200 W/(m2K). By using these value of 
coefficient the difficult (worse) flow around a fluidized bed on the 
front of surface of element was taken into account [18]. The 
simulation of heating was continuing to obtain the maximum 
temperature 1350 K in surroundings of point 1 (Fig. 4). The 
temperatures Ac1 and Ac3 in the phase transformations of heating 
(input structure - austenite) were equal 1033 and 1133 K 
appropriately (Fig. 1) [14]. 

The obtained temperature distribution and austenite zone after 
finish of heating are presented in figure 5. 

The cooling was modelled with the Newton condition and the 
extreme of heat transfer coefficient assumed equal 20 W/(m2K) 
(cooling in the air [14]). The temperature of the cooling medium 
equalled T=300 K. 
 

 

 
Fig. 5. Distributions of temperature a) and austenite b) after 

heating. Isolines with values 1033 and 1133 K, are the 
temperature of Ac1 and Ac3 appropriately 

 
Hardened zones in the cross sections of the element are 

presented in figures 6 and 7. Distributions of the simulated 
fractions in the cross-section A-A (Fig. 4) after hardening are 
presented in figure 8. 
 

 
Fig. 6. Distributions of bainite a) and martensite b) after cooling 

 

 
Fig. 7. Distributions of retained austenite a) and pearlite b) after 

cooling 
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Fig. 8. Hardened zones in the cross sections (Fig. 4) 

 
Young′s and tangential modulus (E and Et) were dependent on 

temperature, whereas the yields stress (Y0) was dependent on 
temperature and phase composition. Assumed, that Young′s and 
tangential modulus are equal 2105 and 4103 MPa (Et=0.05E), 
yield points 150, 500, 1000 and 300 MPa for austenite, bainite, 
martensite and pearlite, respectively, in the temperature 300 K. In 
the temperature of solidus Young′s modulus and tangential 
modulus equalled 100 and 10 MPa, respectively, whereas yield 
points equalled 5 MPa. These values were approximated with the 
use of square functions using the following assumptions based on 
the work [5,6,16]. 

Obtained from simulations residual stresses distributions after 
hardening are presented in figures 9-12. 
 

 
Fig. 9. Residual stresses in the cross sections (Fig. 4)  

 
 

4. Conclusions 
 

The results of the phase transformations model are 
satisfactory and confirm the correctness of the designed model of 
phase transformations for the hot-work tool steel (Figs 6 and 7). 
On the basis of simulated dilatometric curves can see that the 
considered steel is hardened very easy. To obtain the bainite-
martensite structure the cooling rate can't be greater than 3.2 K/s 
(see Figs 1,2 and 3). Therefore the cooling in the air was applied 
and the cooling rate was equal 0.24 K/s in the point 2 (Fig. 4). In 
the point 1 the cooling rate was a bit greater and had a value 
0.255 K/s (see Fig. 1). 

 
Fig. 10. Residual stresses: radial a) and shear b)  

 

 
Fig. 11. Residual stresses: circumferential a) and axial b)  

 

 
Fig. 12. Stresses according to the time (point 2, Fig. 4)  

 
The stresses distributions after such hardening are 

advantageous. The regular distributions of the stresses are 
obtained. The extreme values of these stresses are acceptable. The 
deposition of negative circumferential and axial stresses (the most 
meaningful stresses) is superficial (Figs 9-11), and their extreme 
values are lower when these stresses are taken into account. The 
adverse is the distribution of the shear stresses (Fig. 10b). Such 
stresses can be a cause of internal cracks in the cooling process.  

It can be claimed that in the numerical simulation of such 
hardening the fact that transformation plasticity is included in the 
model of mechanical phenomena brings about the changes in 
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obtained results [10,11,16]. The phase transformations 
significantly effect on the changes of the temporary stresses (see 
Fig. 12) and in consequence on the residual stresses after 
hardening of the element considered.  
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