Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Buckling of thin-walled and load-bearing elements of a structure can have devastating consequences. Hence, buckling checks are an integral part of strength analysis of structures. The buckling problem of thin rectangular plates subjected to in-plane compressive and/or shear loading is of great importance in building, bridge, aerospace, marine, and shipbuilding industries. When buckling occurs, thin plates undergo large out-of-plane deflections, which in turn results in the development of large bending stresses and eventually complete failure of the structure. This paper deals with the buckling stability assessment of uniaxially-compressed plates with different support conditions within the framework of classical plate theory. The main objective of this research is to explore some uncovered aspects of buckling stability of plates by considering the effects of support conditions, aspect ratio, and slenderness ratio, which will consequently result in efficient design of such thin-walled structures. To this end, in addition to validation of the numerical simulation, some case studies have been performed in order to gain a better understanding of different aspects of buckling stability of such thin-walled structures.
Wydawca
Rocznik
Tom
Strony
97--105
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Department of Civil Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran
autor
- Department of Civil Engineering and Construction Management, California State University, Northridge, CA, USA
autor
- Department of Civil Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran
autor
- Department of Civil Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran
Bibliografia
- 1. ABAQUS (2016). ABAQUS/Standard Theory Manual. K. Hibbitt, Sorenson, Inc./HKS, Pawtucket, Rhode Island.
- 2. Bryan G.H. (1890). “On the stability of a plane plate under thrusts in its own plane, with applications to the buckling of the sides of a ship”, Proceedings of the London Mathematical Society, s1- 22(1), 54-67, DOI: 10.1112/plms/s1-22.1.54.
- 3. Cox H.L. (1933). The Buckling of Thin Plates in Compression. British Aeronautical Research Committee, Reports and Memoranda, No. 1554.
- 4. Cox H.L. (1963). The Buckling of Plates and Shells. Macmillan, New York.
- 5. Dinnik A.N. (1911). “On stability of a compressed circular plate”, Proceedings of the Kiev Polytechnic Institute, Kiev. (In Russian)
- 6. EN 1993-1-5 (2006). Euro code 3: Design of Steel Structures-Part 1-5: Plated Structural Elements. European Committee for Standardization, Brussels.
- 7. Gerard G. and Becker H. (1957). Handbook of Structural Stability: Part1 - Buckling of Flat Plates. NACA TN 3781.
- 8. Kilardj M., Ikhenazen G., Messager T., and Kanit T. (2016). “Linear and nonlinear buckling analysis of a locally stretched plate”, Journal of Mechanical Science and Technology, 30(8), 3607-3613.
- 9. Latifi M., Farhatnia F., and Kadkhodaei M. (2013). “Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion”, European Journal of Mechanics - A/Solids, 41(September-October), 16-27.
- 10. Mijušković O., Ćorić B., and Šćepanović B. (2014). “Exact stress functions implementation in stability analysis of plates with different boundary conditions under uniaxial and biaxial compression”, Thin-Walled Structures, 80(July), 192-206, DOI: 10.1016/j.tws.2014.03.006.
- 11. Najafizadeh M.M., Mahdavian M., and Khazaeinejad P. (2010). “Superposition buckling analysis of rectangular plates composed of functionally graded materials subjected to non-uniform distributed in-plane loading”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(11), 2299-2307, DOI: 10.1243/09544062JMES2134.
- 12. Navier C.L.M.H. (1823). Bulletin des Sciences de la Societe Philomathique de Paris. Paris.
- 13. PLATE-BUCKLING (2015). Dlubal Software: Plate Buckling Analysis for Stiffened and Unstiffened Plates According to EN 1993-1-5 and DIN 18800-3.
- 14. Rammerstorfer F.G. (2018). “Buckling of elastic structures under tensile loads”, Acta Mechanica, 229(2), 881-900.
- 15. Rouegar J. and Sharifpoor R.A. (2017). “Finite Element Formulations for Buckling Analysis of Isotropic and Orthotropic Plates using Two-Variable Refined Plate Theory”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 41(3), 177-187.
- 16. Southwell R.V. and Scan S. (1924). “On the stability under shearing forces of a flat elastic strip”, Proce-edings of the Royal Society of London, A105(733), 582-607, DOI: 10.1098/rspa.1924.0040.
- 17. Timoshenko S.P. and Gere J.M. (1961). Theory of Elastic Stability. 2nd Ed., McGraw-Hill, New York.
- 18. Ventsel E. and Krauthammer T. (2001). Thin Plates and Shells; Theory, Analysis, and Applications. Marcel Dekker, Inc., New York.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec623f8-1918-4cde-b044-80e78c59e6cb