PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel Supported Ionic Liquid Adsorbents for Hydrogen Sulphide Removal from Biogas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The imidazolium-based supported ionic liquids (IL) in activated carbon (AC) is an exciting strategy for developing new adsorbents for H2S removal from biogas. In this work, the influence of IL on AC was discovered by examining the effect of ultrasonic stirring as an impregnation method, AC particle size and IL anion type. AC300μm-[Bmim] Cl-U5 demonstrated the highest H2S adsorption capacity of 8.25±0.38 mg H2S/g and was obtained through [Bmim] Cl impregnated on 300 μm AC size through the ultrasonic stirring for five minutes at room temperature. The adsorption/desorption study confirmed the regeneration ability of AC300μm-[Bmim]Cl-U5 up to three cycles with a maximum adsorption capacity of 14.24±0.43 mg H2S/g. The SEM images confirmed the presence of IL on the AC surface and were further explained through BET analysis. TGA measurement indicated the thermal stability of pristine IL, the fresh and exhausted adsorbent. Therefore, this study proved the potential of ultrasonic-assisted supported IL as a promising adsorbent for H2S removal from biogas that exhibits excellent properties in high adsorption capacity and thermal stability.
Słowa kluczowe
Rocznik
Strony
66--79
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
autor
  • Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Biomedical Research Centre, Northwest Minzu University, Gansu Lanzhou, 730030, China
  • Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Bibliografia
  • 1. Al Mamun, M.R., Torii, S. 2015. Enhancement of production and upgradation of biogas using different techniques- a review. Int. J. Earth Sci. Eng. 8, 877–892.
  • 2. Amin, M.A., Shukor, H., Yin, L.S., Kasim, F.H., Shoparwe, N.F., Makhtar, M.M.Z., Yaser, A.Z. 2022. Methane biogas production in Malaysia: challenge and future plan. Int. J. Chem. Eng. 2022. https://doi.org/10.1155/2022/2278211
  • 3. Andriani, D., Rajani, A., Kusnadi, Santosa, A., Saepudin, A., Wresta, A., Atmaja, T.D. 2020. A review on biogas purification through hydrogen sulphide removal. IOP Conf. Ser. Earth Environ. Sci. 483. https://doi.org/10.1088/1755-1315/483/1/012034
  • 4. Aquino, A.S., Bernard, F.L., Borges, J. V., Mafra, L., Vecchia, F.D., Vieira, M.O., Ligabue, R., Seferin, M., Chaban, V. V., Cabrita, E.J., Einloft, S. 2015. Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Adv. 5, 64220–64227. https://doi.org/10.1039/c5ra07561k
  • 5. Azlan Kassim, M., Asrina Sairi, N., Yusoff, R., Kheireddine Aroua, M. 2020. Experimental Densities of Binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or sulfolane with monoethanolamine and their molecular interaction by COSMO-RS. IOP Conf. Ser. Mater. Sci. Eng. 778. https://doi.org/10.1088/1757-899X/778/1/012022
  • 6. Balchandani, S., Singh, R. 2021. COSMO-RS Analysis of CO2 Solubility in N-Methyldiethanolamine, Sulfolane, and 1-Butyl-3-methyl-imidazolium Acetate Activated by 2-Methylpiperazine for Postcombustion Carbon Capture. ACS Omega 6, 747–761. https://doi.org/10.1021/acsomega.0c05298
  • 7. Beigi, A.A.M., Yousefi, M., Abdouss, M., 2018. Room temperature imidazolium-based ionic liquids as scavengers for hydrogen sulfide removal of crude oil. Anal. Methods Environ. Chem. J. 1, 11–22. https:// doi.org/10.24200/amecj.v1.i01.32
  • 8. Caglayan, H.P., Unal, U., Keskin, S., Uzun, A. 2023. Effect of Surface Characteristics of Graphene Aerogels and Hydrophilicity of Ionic Liquids on the CO2 /CH4 Separation Performance of Ionic Liquid/Reduced Graphene Aerogel Composites. ACS Appl. Nano Mater. 6, 2203–2217. https://doi.org/10.1021/acsanm.2c05476
  • 9. Chaemchuen, S., Zhou, K., Verpoort, F. 2016. From biogas to biofuel: Materials used for biogas cleaning to biomethane. ChemBioEng Rev. 3, 250–265. https://doi.org/10.1002/CBEN.201600016/PDF
  • 10. Chaves, F.A., Jiménez, D. 2018. Effect of Impregnated Activated Carbon on Carbon Dioxide Adsorption Performance for Biohydrogen Purification. Nanotechnology 29.
  • 11. Cheng, H., Li, N., Zhang, R., Wang, N., Yang, Y., Teng, Y., Jia, W., Zheng, S. 2021. Measuring and modeling the solubility of hydrogen sulfide in rFeCl3/[bmim]Cl. Processes 9, 1–13. https://doi. org/10.3390/pr9040652
  • 12. Choi, S.Y., Nam, S.C., Yoon, Y. Il, Park, K.T., Park, S.J. 2014. Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups. Ind. Eng. Chem. Res. 53, 14451–14461. https://doi. org/10.1021/ie502434m
  • 13. Choo, H.S., Lau, L.C., Mohamed, A.R., Lee, K.T. 2013. Hydrogen sulfide adsorption by alkaline impregnated coconut shell activated carbon. J. Eng. Sci. Technol. 8, 741–753.
  • 14. Dou, J., Tahmasebi, A., Li, X., Yin, F., Yu, J. 2016. Char-supported Fe-Zn-Cu sorbent prepared by ultrasonic-assisted impregnation for simultaneous removal of H2S and COS from coke oven gas. Environ. Prog. Sustain. Energy 35, 352–358. https:// doi.org/10.1002/ep.12224
  • 15. Dou, J., Yu, J., Tahmasebi, A., Yin, F., Gupta, S., Li, X., Lucas, J., Na, C., Wall, T. 2015. Ultrasonic-assisted preparation of highly reactive Fe-Zn sorbents supported on activated-char for desulfurization of COG. Fuel Process. Technol. 135, 187–194. https:// doi.org/10.1016/j.fuproc.2015.01.035
  • 16. Duczinski, R., Bernard, F., Rojas, M., Duarte, E., Chaban, V., Vecchia, F.D., Menezes, S., Einloft, S. 2018. Waste derived MCMRH- supported IL for CO2/CH4 separation. J. Nat. Gas Sci. Eng. 54, 54–64. https://doi.org/10.1016/j.jngse.2018.03.028
  • 17. Guanhua, N., Zhao, L., Qian, S., Shang, L., Kai, D. 2019. Effects of [Bmim][Cl] ionic liquid with different concentrations on the functional groups and wettability of coal. Adv. Powder Technol. 30, 610–624. https://doi.org/10.1016/j.apt.2018.12.008
  • 18. Huang, K., Feng, X., Zhang, X.M., Wu, Y.T., Hu, X.B. 2016. The ionic liquid-mediated Claus reaction: A highly efficient capture and conversion of hydrogen sulfide. Green Chem. 18, 1859–1863. https://doi.org/10.1039/c5gc03016a
  • 19. Huang, Z., Mohamedali, M., Karami, D., Mahinpey, N. 2022. Evaluation of supported multi-functionalized amino acid ionic liquid-based sorbents for low temperature CO2 capture. Fuel 310, 122284. https:// doi.org/10.1016/j.fuel.2021.122284
  • 20. Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N. 2009. Solubility of H2S in ionic liquids [bmim][PF6], [bmim] [BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 54, 1844–1849. https://doi.org/10.1021/je8009495
  • 21. Jalili, A.H., Shokouhi, M., Maurer, G., Zoghi, A.T., Sadeghzah Ahari, J., Forsat, K. 2019. Measuring and modelling the absorption and volumetric properties of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. J. Chem. Thermodyn. 131, 544–556. https://doi.org/10.1016/j. jct.2018.12.005
  • 22. Jiang, B., Zhang, J., Chen, Y., Song, H., Hao, T., Kuang, J. 2020. Ultrasonic-assisted preparation of highly active Co3O4 /MCM-41 adsorbent and its desulfurization performance for low H2S concentration gas. RSC Adv. 10, 30214–30222. https://doi. org/10.1039/d0ra05606e
  • 23. Kalidhasan, S., Santhana KrishnaKumar, A., Rajesh, V., Rajesh, N. 2012. Ultrasound-assisted preparation and characterization of crystalline celluloseionic liquid blend polymeric material: A prelude to the study of its application toward the effective adsorption of chromium. J. Colloid Interface Sci. 367, 398–408. https://doi.org/10.1016/j.jcis.2011.09.062
  • 24. Korbag, I., Mohamed Saleh Omer, S., Boghazala, H., Ahmeedah Aboubakr Abusasiyah, M. 2021. Recent advances of biogas production and future perspective. Biogas - Recent Adv. Integr. Approaches. https://doi.org/10.5772/intechopen.93231
  • 25. Li, W., Xiao, W., Luo, Q., Yan, J., Zhang, G., Chen, L., Sun, J. 2023. Ionic liquids promoted synthesis, enhanced functions, and expanded applications of porous organic frameworks. Coord. Chem. Rev. 493, 215304. https://doi.org/10.1016/j.ccr.2023.215304
  • 26. Ma, Y., Mao, J., Xiao, C., Li, Y., Zang, L. 2019. Immobilization of functionalized ionic liquid on solgel derived silica for efficient removal of H2S. China Pet. Process. Petrochemical Technol. 21, 62–70.
  • 27. Mohan, M., Keasling, J.D., Simmons, B.A., Singh, S. 2022. In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic. Green Chem. 24, 4140–4152. https://doi.org/10.1039/d1gc03464b
  • 28. Mullick, A., Neogi, S. 2019. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrason. Sonochem. 50, 126–137. https://doi. org/10.1016/j.ultsonch.2018.09.010
  • 29. Mutalib, N.F.A., Bustam, M.A., Wirzal, M.D.H., Idris A. 2022. A prediction for the conversion performance of H2S to elemental sulfur in an ionic-liquidincorporated transition metal using COSMO-RS. Chemistry, 4(3), 811–826. https://doi.org/10.3390/ chemistry4030058
  • 30. Nurhidayah, A., Zaini, N., Zulhaziman, M., Salleh, M., Zulbadli, N., Mohamad, N.A., Ezaty, S.N., Shafie, N.S., Sahri, D.M., Mohd Najib, S.S.A. 2022. Evaluation of physically modified kenaf core adsorbent for carbon dioxide adsorptive study. J. Phys. Conf. Ser. 2259. https://doi. org/10.1088/1742-6596/2259/1/012007
  • 31. Lucena P., S.M., Angel Centeno, M., Rios, R., Juliano Prauchner marcosjp, M., Juliano Prauchner, M., da Cunha Oliveira, S., Rodríguez-Reinoso, F. 2020. Tailoring low-cost granular activated carbons Intended for CO2 adsorption. Front. Chem. | www. frontiersin.org 8, 581133. https://doi.org/10.3389/ fchem.2020.581133
  • 32. Plaza, M.G., García, S., Rubiera, F., Pis, J.J., Pevida, C. 2010. Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies. Chem. Eng. J. 163, 41–47. https://doi.org/10.1016/j.cej.2010.07.030
  • 33. Polesso, Bárbara B., Bernard, F.L., Ferrari, H.Z., Duarte, E.A., Vecchia, F.D., Einloft, S. 2019. Supported ionic liquids as highly efficient and low-cost material for CO2 /CH4 separation process. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e02183
  • 34. Polesso, Bárbara Burlini, Duczinski, R., Bernard, F.L., Ferrari, H.Z., Da Luz, M., Vecchia, F.D., De Menezes, S.M.C., Einloft, S. 2019. Imidazoliumbased ionic liquids impregnated in silica and alumina supports for CO2 capture. Mater. Res. 22, 1–10. https://doi.org/10.1590/1980-5373-MR-2018-0810
  • 35. Prasad, S., Rathore, D., Singh, A. 2017. Recent Advances in Biogas Production. Chem Eng Process Tech 3, 1038.
  • 36. Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N., Jalili, A.H. 2009. Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N]. J. Chem. Thermodyn. 41, 10521055. https://doi.org/10.1016/j.jct.2009.04.014
  • 37. Ren, H., Li, H., Shen, H., Liu, Y. 2023. Experimental study on CO2 adsorption with silica-supported ionic liquid in a high gravity reactor. Fuel 331, 125932. https://doi.org/10.1016/j.fuel.2022.125932
  • 38. Ren, H., Shen, H., Liu, Y. 2022. Adsorption of CO2 with tetraethylammonium glycine ionic liquid modified alumina in the Rotating Adsorption Bed. J. CO2 Util. 58, 101925. https://doi.org/10.1016/j. jcou.2022.101925
  • 39. Sakhaeinia, H., Jalili, A.H., Taghikhani, V., Safekordi, A.A., Ahmadi, A.N. 2010. Solubility of H2S in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim] [Tf2N]) Hossein. J. Chem. Eng. Data 55, 5839–5845.
  • 40. Santiago, R., Lemus, J., Hospital-Benito, D., Moya, C., Bedia, J., Alonso-Morales, N., Rodriguez, J.J., Palomar, J. 2019. CO2 capture by supported ionic liquid phase: Highlighting the role of the particle size. ACS Sustain. Chem. Eng. 7, 13089–13097. https://doi.org/10.1021/acssuschemeng.9b02277
  • 41. Santiago, R., Lemus, J., Outomuro, A.X., Bedia, J., Palomar, J. 2020. Assessment of ionic liquids as H2S physical absorbents by thermodynamic and kinetic analysis based on process simulation. Sep. Purif. Technol. 233, 116050. https://doi.org/10.1016/j. seppur.2019.116050
  • 42. Syahri, S.N.K.M., Hasan, H.A., Abdullah, S.R.S., Othman, A.R., Abdul, P.M., Azmy, R.F.H.R., Muhamad, M.H. 2022. Recent Challenges of Biogas Production and its Conversion to Electrical Energy. J. Ecol. Eng. 23, 251–269. https://doi. org/10.12911/22998993/146132
  • 43. Taheri, M., Zhu, R., Yu, G., Lei, Z. 2021. Ionic liquid screening for CO2 capture and H2S removal from gases: The syngas purification case. Chem. Eng. Sci. 230, 116199. https://doi.org/10.1016/j.ces.2020.116199
  • 44. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. https://doi. org/10.1515/pac-2014-1117
  • 45. Xiao, C. 2017. Review of desulfurization process for biogas purification. IOP Conf. Ser. Earth Environ. Sci. 100. https://doi.org/10.1088/1755-1315/100/1/012177
  • 46. Zhang, H.Y., Yang, C., Geng, Q., Fan, H.L., Wang, B.J., Wu, M.M., Tian, Z. 2019. Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study. Appl. Surf. Sci. 497, 143815. https:// doi.org/10.1016/j.apsusc.2019.143815
  • 47. Zhang, J., Song, H., Chen, Y., Hao, T., Li, F., Yuan, D., Wang, X., Zhao, L., Gao, J. 2018. Amino-modified molecular sieves for adsorptive removal of H2S from natural gas. RSC Adv. 8, 38124–38130. https:// doi.org/10.1039/c8ra06859c
  • 48. Zhang, Z., Liu, X., Li, D., Lei, Y., Gao, T., Wu, B., Zhao, J., Wang, Y., Zhou, G., Yao, H. 2019. Mechanism of ultrasonic impregnation on porosity of activated carbons in non-cavitation and cavitation regimes. Ultrason. Sonochem. 51, 206–213. https:// doi.org/10.1016/j.ultsonch.2018.10.024
  • 49. Zhao, Y., Biggs, T.D., Xian, M. 2014. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. ChemInform 45, 11788–11805. https://doi.org/10.1039/c4cc00968a
  • 50. Zhou, X., Cao, B., Liu, S., Sun, X., Zhu, X., Fu, H. 2016. Theoretical and experimental investigation on the capture of H2S in a series of ionic liquids. J. Mol. Graph. Model. 68, 87–94. https://doi.org/10.1016/j. jmgm.2016.06.013
  • 51. Zulkefli, N.N., Mathuray Veeran, L.S., Noor Azam, A.M.I., Masdar, M.S., Wan Isahak, W.N.R. 2022a. Effect of bimetallic-activated carbon impregnation on adsorption–desorption performance for hydrogen sulfide (H2S) capture. Materials (Basel). 15, 5409. https://doi.org/10.3390/ma15155409
  • 52. Zulkefli, N.N., Seladorai, R., Masdar, M.S., Sofian, N.M., Isahak, W.N.R.W. 2022b. Core Shell Nanostructure: Impregnated Activated Carbon as Adsorbent for Hydrogen Sulfide Adsorption. Molecules 27, 1–15. https://doi.org/10.3390/molecules27031145
  • 53. Zulkefli, N.N., Shahbudin, M., Id, M., Nor, W., Wan, R., Jahim, J., Rejab, S.A., Lye, C.C. 2019. Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent. PLoS One, 14(2): e0211713. https://doi.org/10.1371/journal. pone.0211713
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec56432-f359-4075-9f16-1276cb6a87bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.