PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Effect of 0.2% Addition of Mg, Co and Ce on Microstructure and Mechanical Properties of 1xxx Series Aluminium Alloy Castings Designed for Overhead Transmission Lines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of 0.2% addition of Mg, Co and Ce to 99.9% cast aluminium was studied by evaluation of changes in microstructure and mechanical properties. The microstructure was analyzed by scanning electron microscopy and transmission electron microscopy. The Al99.9 alloy contained only Al-Fe-Si phase particles. Similar Al-Fe-Si particles were observed in alloy with 0.2% Mg addition, because this amount of magnesium was fully dissolved in the solid solution. The addition of cobalt resulted in the formation of Al9.02Co1.51Fe0.47 phase particles assuming the shape of eutectic plates. The electron backscattered diffraction map made for the alloy with 0.2% Co addition showed numerous twin boundaries with distances between them in the range from 10 to 100 µm. The addition of cerium was located in the grain boundary area. Cerium also gave rise to the formation of two types of particles, i.e. Al4Ce and Al-Ce-Fe-Si. The Al-Ce-Fe-Si phase is a nucleation site for the Al4Ce phase, which forms eutectic plates. The results showed that the introduction of additives increases the mechanical properties of the cast materials. The 99.9% cast aluminium has a hardness of 16.9 HB. The addition of 0.2% by weight of Mg, Co, Ce increases this hardness to 21.8 HB, 22.6 HB and 19.1 HB, respectively.
Twórcy
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Division in Skawina, 19 Piłsudskiego Str., 32-050 Skawina, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Division in Skawina, 19 Piłsudskiego Str., 32-050 Skawina, Poland
  • Boryszew S.A., Modern Aluminium Products, 23 Piłsudskiego Str., 32-050 Skawina, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Division in Skawina, 19 Piłsudskiego Str., 32-050 Skawina, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Division in Skawina, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • Boryszew S.A., Modern Aluminium Products, 23 Piłsudskiego Str., 32-050 Skawina, Poland
  • Boryszew S.A., Modern Aluminium Products, 23 Piłsudskiego Str., 32-050 Skawina, Poland
Bibliografia
  • [1] J. Kreyca, E. Kozeschnik, State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions, International Journal of Plasticity 103, 67-80 (2018). DOI: https://doi.org/10.1016/J.IJPLAS.2018.01.001
  • [2] J.D. Embury, D.J. Lloyd, T.R. Ramachandran, Strengthening mechanisms in aluminum alloys, A.K. Vasudevan, R.D. Doherty (Eds.), Aluminum alloys - contemporary research and applications, San Diego, Academic Press, 579-604 (1989).
  • [3] X. Sauvage, S.S. Lee, K. Matsuda, Z. Horita, Origin of the influence of Cu or Ag micro-additions on the age hardening behavior of ultrafine-grained Al-Mg-Si alloys, Journal of Alloys and Compounds 710, 199-204 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.03.250
  • [4] S. Samson, The Crystal Structure of the phase β-Mg2Al3, Acta Crystallographica 19, 401-413 (1965). DOI: https://doi.org/10.1107/S0365110X65005133
  • [5] R. Goswami, G. Spanos, P.S. Pao, R.L. Holtz, Precipitation behaviour of the β phase in Al-5083, Materials Science and Engineering A 527 (4-5), 1089-1095 (2010). DOI: https://doi.org/10.1016/j.msea.2009.10.007
  • [6] L.F. Mondolfo, Aluminum Alloys: Structure and Properties, London: Butterworths, (1976).
  • [7] J. Dolinšek, T. Apih, P. Jeglič, I. Smiljanić, A. Bilušić, Z. Bihar, A. Smontara, Z. Jagličić, M. Heggen, M. Feuerbacher, Magnetic and transport properties of the giant-unit-cell Al3.26Mg2 complex metallic alloy, Intermetallics 15 (10), 1367-1376 (2007). DOI: https://doi.org/10.1016/j.intermet.2007.04.010
  • [8] F. Fickett, A review of resistive mechanisms in aluminium, Cryogenics 11, 349-367 (1971). DOI: https://doi.org/10.1016/0011-2275(71)90036-1
  • [9] X. Li, L. Liu, Y. Jiang, G. Huang, X. Wang, Y. Jiang, J. Liang, L. Zhang, X. Shi, Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Al-Co-Gd system, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 52, 57-65 (2016). DOI: https://doi.org/10.1016/j.calphad.2015.11.002
  • [10] E. Stein, C. He, N. Dupin, Melting Behavior and Homogeneity Range of B2 CoAl and Updated Thermodynamic Description of the Al-Co System, Intermetallics 39, 58-68 (2013). DOI: https://doi.org/10.1016/j.intermet.2013.03.011
  • [11] B. Grushko, R. Wittenberg, K. Bickmann, C. Freiburg, The constitution of aluminum-cobalt alloys between Al5Co2 and Al9Co2, Journal of Alloys and Compounds 233 (1-2), 279-287 (1996). DOI: https://doi.org/10.1016/0925-8388(95)02045-4
  • [12] Y. Kang, A.D. Pelton, P. Chartrand, P. Spencer, C.D. Fuerst, Critical Evaluation and Thermodynamic Optimization of the Binary Systems in the Mg-Ce-Mn-Y System, Journal of Phase Equilibria and Diffusion 28, 342-354 (2007). DOI: https://doi.org/10.1007/s11669-007-9095-9
  • [13] M.C. Gao, N. Ünlü, G.J. Shiflet, M. Mihalkovic, M. Widom, Reassessment of Al-Ce and Al-Nd binary systems supported by critical experiments and first-principles energy calculations, Metallurgical and Materials Transactions A36, 3269-3279 (2005). DOI: https:// doi.org/10.1007/s11661-005-0001-y
  • [14] L. Pengfei, W. Zhigang, W. Yunli, G. Xizhu, W. Zaiyum, L. Zhiqiang, Effect of Cerium on Mechanical Performance and Electrical Conductivity of Aluminum Rod for Electrical Purpose, Journal of Rare Earth 24 (1), 355-357 (2006). DOI: https://doi.org/10.1016/S1002-0721(07)60400-1
  • [15] P. Koprowski, M. Lech-Grega, Ł. Wodziński, B. Augustyn, S. Boczkal, M. Ożóg, P. Uliasz, J. Żelechowski, W. Szymański, The effect of low content additives on strength, resistivity and microstructural changes in wire drawing of 1xxx series aluminium alloys for electrical purposes, Materials Today Communications 24, 101039 (2020). DOI: https://doi.org/10.1016/j.mtcomm.2020.101039
  • [16] Q. Zhao, Z. Qian, X. Cui, Y. Wu, X. Liu, Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy, Journal of Alloys and Compounds 666, 50-57 (2016). DOI: https://doi.org/10.1016/j.jallcom.2016.01.110
  • [17] C.A.P. Silva, R. Kakitani, M.V. Canté, C. Brito, A. Garcia, J.E. Spinelli, N. Cheung, Microstructure, phase morphology, eutectic coupled zone and hardness of Al-Co alloys, Materials Characterization 169, 110617 (2020). DOI: https://doi.org/10.1016/j.matchar.2020.110617
  • [18] M.A. Salgado-Ordorica, M. Rappaz, Twinned dendrite growth in binary aluminum alloys, Acta Materialia 56, 5708-5718 (2008). DOI: https://doi.org/10.1016/j.actamat.2008.07.046
  • [19] L. Zhang, J. Gao, L. Nana, W. Damoah, D. Robertson, Removal of iron from aluminium: a review, Mineral Processing and Extractive Metallurgy Review 33, 99-157 (2012). DOI: https://doi.org/10.1080/08827508.2010.542211
  • [20] Z.P. Que, Y. Wang, Z. Fan, Formation of the Fe-containing intermetallic compounds during solidification of Al-5Mg-2Si-0.7 Mn-1.1 Fe alloy, Metallurgical and Materials Transactions A 49, 2173-2181 (2018). DOI: https://doi.org/10.1007/s11661-018-4591-6
  • [21] E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al-Mg alloy, Materials Science and Engineering: A 527, 1292-1298 (2010). DOI: https://doi.org/10.1016/j.msea.2009.11.056
  • [22] R. Kalsar, D. Yadav, A. Sharma, H.-G. Brokmeier, J. May, H.W. Höppel, W. Skrotzki, S. Suwas, Effect of Mg content on microstructure, texture and strength of severely equal channel angular pressed aluminium-magnesium alloys, Materials Science and Engineering: A 797, 140088 (2020). DOI: https://doi.org/10.1016/j.msea.2020.140088
  • [23] H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Al-Mg, Bi-Sr, Ce-Cu, Co-Nd, Cu-Nd, Dy-Pb, Fe-Nb, Nd-Pb, Pb-Pr, Pb-Tb, Pd-Sb, and Si-W, Journal of Phase Equilibria and Diffusion 36, 183-195 (2015). DOI: https://doi.org/10.1007/s11669-014-0359-x
  • [24] H. Cai, F. Guo, X. Ren, J. Su, B. Chen, Effects of cerium on as-cast microstructure of AZ91 magnesium alloy under different solidification rates, Journal of Rare Earths 34 (7), 736-741 (2016). DOI: https://doi.org/10.1016/S1002-0721(16)60085-6
  • [25] J. Su, F. Guo, H. Cai, L. Liu, Structural analysis of Al-Ce compound phase in AZ-Ce cast magnesium alloy, Journal of Materials Research and Technology 8 (6), 6301-6307 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.07.042
  • [26] A. Plotkowski, K. Sisco, S. Bahl, A. Shyam, Y. Yang, L. Allard, P. Nandwana, A.M. Rossy, R. Dehoff, Microstructure and properties of a high temperature Al-Ce-Mn alloy produced by additive manufacturing, Acta Materialia 196, 595-608 (2020). DOI: https://doi.org/10.1016/j.actamat.2020.07.014
  • [27] Y. Sun, C. Hung, R.J. Hebert, C. Fennessy, S. Tulyani, M. Aindow, Eutectic microstructures in dilute Al-Ce and Al-Co alloys, Materials Characterization 154, 269-276 (2019). DOI: https://doi.org/10.1016/j.matchar.2019.06.010
  • [28] L. Yang, S. Li, K. Fan, Y. Li, Y. Chen, W. Li, D. Kong, P. Cao, H. Long, A. Li, Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification, Journal of Material Science & Technology 71, 152-162 (2021). DOI: https://doi.org/10.1016/j.jmst.2020.07.032
  • [29] M. Bostrom, H. Rosner, Y. Prots, U. Burkhardt, Y. Grin, The Co2Al9 Structure Type Revisited, Zeitschrift für anorganische und allgemeine Chemie 631, 534-541 (2005). DOI: https://doi.org/10.1002/zaac.200400418
  • [30] B. Grushko, W. Kowalski, M. Surowiec, On the constitution of the Al-Co-Fe alloy system, Journal of Alloys and Compounds 491, L5-L7 (2010). DOI: https://doi.org/10.1016/j.jallcom.2019.152110
  • [31] B.A. Szajewski, J.C. Crone, J. Knap, Analytic model for the Orowan dislocation-precipitate bypass mechanism, Materialia 11, 100671 (2020). DOI: https://doi.org/10.1016/j.mtla.2020.100671
  • [32] L. Liu, J. Chen, T. Fan, S. Shang, Q. Shao, D. Yuan, Y. Dai, The stability of deformation twins in aluminum enhanced by alloying elements, Journal of Materials Science & Technology 35 (11), 2625-2629 (2019). DOI: https://doi.org/10.1016/j.jmst.2019.07.029
Uwagi
1. The research was supported by grant of European Funds Smart Growth Operational Programme 2014-2020, project number: POIR.04.01.04-00- 0022/15.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ec44128-626a-42e4-8b65-4012fb2c3bd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.