Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS), microscopic observations (optical and scanning microscopy, image ana-lyser), as well as Brinell hardness and HV microhardness measurements of structural components.
Czasopismo
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Foundry and Automation Team, Institute of Production Engineering and Automation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Foundry and Automation Team, Institute of Production Engineering and Automation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Barton, R. (1958). Constitution, production and mechanical properties of Ni-Resist, B.C.I.R.A. Journal of Research and Developmenmt. 7, 299-308.
- [2] Nickel Mond Company, Ni-Resist Austenitic Cast Iron. Properties and Applications (1962). London.
- [3] Abramenko, Y. E., Aptekar, L. I. & Tiskovich, N. L. (1978). Conditions of stability of the structure of Ni-resist alloys, Metallovedenije i Termicheskaya Obrabotka Metallov. 6, 61- 64.
- [4] Tabor, A., Putyra, P., Zarębski, K. & Maguda, T. (2009). Austenitic ductile iron for low temperature. Applications. Archives of Foundry Engineering. 9(1), 163-168.
- [5] Guzik, E.& Kopyciński, D. (2004). The structure and impact resistance of austenitic cast iron for operation at low temper-atures. Archives of Foundry. 4(11), 115-120.
- [6] de Sy, A. & van Eeghem Z. (1958). Rèsultatas des recherches sur les fontes amagnetiques au Ni-Mn-Cu, 25-eme Congres Internacionale de Fonderie, Menoire nr 6, Bruxelles.
- [7] Szpunar, E. (1973). Patent: 66653, UKD, Austenitic Ductile Cats Iron.
- [8] Szpunar, E. (1995). The influence of copper on the structure of the austenitic ductile iron Ni-Mn-Cu. Prace Instytutu Mechaniki Precyzyjnej. 1. 12-25.
- [9] Janus, A., Chorzępa, St., Ankudowicz, B. Patent. Polska, nr 174712. Austenitic Cast Irone. IntCl6: C22C 37/00 C22C 37/08.
- [10] Seyedi, S. & Rikhtegar, R. (1994). Reducing the nickel content by using manganese in austenitic ductile iron. Rikhtegary (Journal of Iranian Foundrymen's Society). 1(4), 122-136.
- [11] Pietrowski S. & Bajerski Z. (2005). Ni-resist cast iron with low amount of nickel, Archives of Foundry. 5(17), 445-452 (in Polish).
- [12] Longa, W. (1985). Solidification of casts. Katowice: Wyd. "Śląsk".
- [13] Neumann, P., Schenck, H. & Patterson, W. (1960). Eisen-Kohlenstoff-Legierungen in in thermodynamischer Betrachtung. Giesserei Technisch - Wissenschaftliche Beihefte. 23, 25-32.
- [14] Ahmadabadi, M. N. & Shamloo, R. (2001). Control of Austenitic Transformation in Ductile Iron Aided by Calculation of Fe-C-Si-X Phase Boundaries. Journal of Phase Equilibria. 22(3), 194-198.
- [15] Linares, E., Gerval, V. & Lacaze, J. (1998). On the Characteristic Temperatures of the Euyectoid Reaction in cast Iron. Scripta Materialia. 38(2), 279-285.
- [16] Guzik, E. & Kopyciński, D. (2006). Austenitic ductile iron. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava. 1, 51-56.
- [17] De Sy, A. (1964). Use of cooper (an alloing element) in flake graphite cast iron. Giesserei. 2, 25-32.
- [18] Girszowicz, N.G. (1966). Kristalizacija i swojstwa czuguna w otliwkach, Maszynostrojenije. Moskwa-Lewningrad.
- [19] Janus, A. & Kaczmar, J.W. (1999). Nickel equivalent in austenitic Ni-Mn-Cu cast iron. Acta Metall. Slovaca. 5(2), 452-457.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ebd828c-7459-4ce6-ab9f-19f296f55cbe