PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Removal of Ibuprofen Drugs Residues from Municipal Wastewater by Moringa Oleifera Seeds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Municipal wastewater may contain residues of different drugs causing severe chemical contamination of water bodies. However, the microbial degradation of Wastewater Treatment Plants (WWTP) may not eliminate such drug residues completely. The current work was designed to remove the Ibuprofen drug residues by using the Moringa Oleifera seeds. Various testing methods such as Brunauer, Emmett and Teller (BET), Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) were applied to assess the efficiency of such plant seeds in bioremoval of ibuprofen residues from municipal wastewater The batch reactor was used to find the optimum operating conditions using various parameters with different pH values, duration time, Ibuprofen concentration and various quantities of plant seeds. In the batch reactor, the operation conditions were: pH 7, duration time 150 min, Ibuprofen dose of 1000 mg/l, activated adsorbents and Moringa Oleifera seeds in the amount of 1000 mg/l. Moreover, the packed bed reactor was used to examine different parameters such as initial Ibuprofen concentration, flow rate and bed depth for 6 hours. It was found that the best conditions were 2 cm depth, and 25 l/hr flow rate. Meanwhile, the kinetic constants were studied by adsorption equilibrium with the isothermal Langmuir and Freundlich models. The best results were shown with the Freundlich isotherm, and the first pseudo order was more suitable for the removal of Ibuprofen by adsorbed activation of Moringa Oleifera seeds.
Rocznik
Strony
83--94
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Civil Engineering, University of Technology, Baghdad, Iraq
  • Al Rafidain University College, Baghdad, Iraq
Bibliografia
  • 1. Abbas, M. (2018). The use of Moringa Oleifera Seeds for the removal of Heavy Metals from Wastewater. Nigerian Journal of Engineering Science Research (NIJESR).1(1): 08–13.
  • 2. Abdallah, A,A.: Jazmati, R.R. and Refaai R. (2017). Structural and Optical Properties of ZnO Thin Films. Journal of Nanoand Electronic Physics 1:1.
  • 3. Adegoke, A, A; Amoah, I.D.; Stenstrom, T.A.; Verbyla, M.E. and Mihelcic, J.R. (2018). Epidemiological Evidence and Health Risks Associated with Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front Public Health. 6,337.
  • 4. Alani, F.H, AL-Kindi GY, Al-Bidri N.Kh. (2019) Diclofenac removal from wastewater by Iraqi pillared clay. Journal of Engineering & Technology 37(2)) 24–28.
  • 5. Ali, E.N., Muyibi, S.A., Salleh, H.M., Salleh, M. R.M., & Alam, M.Z. (2009). Moringa Oleifera Seeds As Natural Coagulant for Water Treatment. In Thirteen International Water Technology Conference, IWTC, Hurghada, Egypt, 13, 163–168.
  • 6. Ali, E.N.; Alfarra, S.R.; Yusoff, M.M., and Rahman, M.L. (2015). Environmentally Friendly Biosorbent from Moringa Oleifera Leaves for Water Treatment. International Journal of Environmental Science and Development.6(3): 165–169.
  • 7. Ali, M. Muhammad, S.A.; Idris, S.I. and Ibrahim, U.I. (2019). Disinfection effect of Moringa oleifera seed extracts against bacteria isolated from river water. EMBO. 2(5): 263–268.
  • 8. Amagloh, F.K. and Benang, A. (2009). Effectiveness of Moringa oleifera seed as coagulant for water purification. African Journal of Agricultural Research.4 (1): 119–123.
  • 9. Beltran, J. and Sanchez-Martin, J. (2008). Heavy metals removal from surface water with Moringa oleifera seed extract as flocculant agent. Fresenius Environmental Bulletin.17(12):2134–2140.
  • 10. Carlo, B.; Donna M. Huryn, Amos B. Smith III (2013)” Carboxylic Acid (Bio) Isosteres in Drug Design” Chem. Med. Chem. 8(3):385–395.
  • 11. Connors, S.; Lanza, R.; Sirocki, AQ. and Bergendahl, J. (2013). Removal of Ibuprofen from Drinking Water using Adsorption. Major Qualifying Project completed in partial fulfillment of the Bachelor of Science Degree at Worcester Polytechnic Institute, Worcester, MA.
  • 12. Dahham, N. Kh. (2018)” Diclofenac removal comparison from wastewater by adsorption onto pillared clay, activated carbon and locally produced adsorbent” M.Sc. in Environment Engineering, University of technology.
  • 13. Drewes, J.E. (2007). Removal of pharmaceutical residues during wastewater treatment. Comprehensive Analytical Chemistry. 50:427–449
  • 14. Duan, L.; BinWang, Y. Z. ; Cagnetta, G.; Deng, S.; Huang, J. : Wang, Y. and Yu, G. (2020). Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. Environmental Pollution.264: 114753
  • 15. Emami, F.A.R. Tehrani-Bagha, K.F. Gharanjig, M. Menger, 2010. Kinetic study of the factors controlling Fenton-promoted destruction of a nonbiodegradable dye, Journal of Desalination, 257: 124–128.
  • 16. He, Y.; Sutton, N.B.; Huub, Y.; Rijnaarts, H.M. and Langenhoff, A.A.M. (2018). Fate and distribution of pharmaceutically active compounds in mesocosm constructed wetlands. Journal of Hazardous Materials. 357:198–106.
  • 17. Heberer, Th.; Reddersen, K. and Mechlinski, A. (2002). From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Science and Technology. 46(3): 81–88.
  • 18. Hee-Jong, C. and Seong-Ho, J. (2011). Occurrence of Residual Pharmaceuticals and Fate, Residue and Toxic Effect in Drinking Water Resources. J. of Korean Society of Environmental Engineers. 33(6): 453–479.
  • 19. Ippolito, J; Barbarick, K.A. Elliott, H.A. (2011). Drinking Water Treatment Residuals: A Review of Recent Uses. Journal of Environmental Quality, 40(1):1–1.
  • 20. Kalavathy, H. M., Karthikeyan T., Rajgopal, S., & Miranda S. (2010) Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4 – activated rubber wood sawdust. Journal of Colloid and Interface Science, 292, 354–362.
  • 21. Kawanga, KD, Gatebe E, Mauti GO, Mauti EM. 2016. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa Oleifera seed powder. The Journal of Phytopharmacology; 5(2):71–78
  • 22. Kuriniawan , T.A., Chan G.Y.S., Lo W. H. and Babel S. (2006) “PhysicoChemical Treatment Techniques for Wastewater Laden with Heavy Metals”. Journal of Chemical Engineering; 118: 83–98.
  • 23. Langenhoff, A.; Inderfurth, N.; Veuskens, T.; Schraa, G.; Blockland, M.; Kujawa-Roeleved, K. and Rijnaarts, H. (2013). Microbial Removal of the Pharmaceutical Compounds Ibuprofen and Diclofenac from Wastewater. Research Article – Open Access. |Article ID 325806 | https://doi.org/10.1155/2013/325806.
  • 24. Leon, G.R.; Aldas, M.B.; Guerrero, V.H. and Landazuri, A.C. (2019) Caffeine and irgasan removal from water using bamboo, laurel and moringa residues impregnated with commercial TiO2 nanoparticles. International Materials Research Congress XXVIII. 4(64): 3553–3567.
  • 25. Lin, H.; Chen, L.; Li, H.: Luo, Z.; Lu, J. and Yang, Z. (2018). Pharmaceutically active compounds in the Xiangjiang River, China: Distribution pattern, source apportionment, and risk assessment. Science of the Total Environment.636:875–984.
  • 26. Ljilian, N.; Milan, C.; Milena, T. (2016). Ibuprofen removal from aqueous solution by in situ electrochemically generated ferrate(VI): proof-of-principle. Water Science and Technology.73(2): 389–395.
  • 27. Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithhavaamomwech, S. and Luangthuwapranit, P. (2015). Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products. Indian J. Pharm. Sci. 77(4): 485–490.
  • 28. Morton, J.F. (1991). The horseradish tree, Moringa pterygosperma (Moringaceae): A boon to arid lands? Economic Botany, 45(3), 318–333.
  • 29. Munajad, A, Subroto C, Suwarno (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Journal of Energies 11(2), 364 https://doi.org/10.3390/en11020364.
  • 30. Narender, B.R.; Akshitha, K; Prashanth, A.; Reddy, Y.S. and Saketh, A. (2019). Treatment of water with Moringa Oleifera as a coagulant. World J. of Pharmacy and Pharmaceutical Science. 8(7): 996–1016.
  • 31. Nicoleta, P. Rosu A-M, Aru VA, Nistor DI, Siminiceanu I (2013) Chemically modified clays used for environmental quality. Journal of Engineering Studies and Research, 19(4), 52–58.
  • 32. Nourmoradi, H.; Moghadam, K.F.; Jafari, A. and Kamarehie, B. (2018). Removal of Acetaminophen and Ibuprofen from Aqueous Solutions by Activated Carbon Derived from Quercns Branfi (Oak) Acron as a low-cost Biosorbent.Journal of Environmental Chemical Engineering, 6(6): 6807–6815.
  • 33. Odee, D. (1998). Forest biotechnology research in drylands of Kenya: The development of Moringa species. Dryl Biodivers, 12(3), 7–8.
  • 34. Oghazyan, A.; Yazdanbakhsh, A.; Eslami, A. and Asadi, A. (2017). Removal of Ibuprofen from aqueous solutions by Ozonation process. Open Journal System, 4(3):
  • 35. Okuda, T. and Ali, E.N. (2018). Application of Moringa oleifera Plant in Water Treatment. Water and Wastewater Treatment Technologies. 63–79.
  • 36. Omar, T.F.T.; Aris, A.Z.; Yousoff, F.M., Mustafa, S. 2019. Risk assessment of pharmaceutically active compounds (PhACs) in the Klang River estuary, Malaysia. Environmental Geochemistry and Health. 41: 211–223.
  • 37. Patneedi, C.B. and Prasadu, K.D. (2015). Impact of Pharmaceutical Wastes on Human Life and Environment. RASYAN J. Chem.8(1): 67–70.
  • 38. Pehlic, E., Bajramovic Đ. Mirza N. Majda S.,( 2013) Propionic acid derivatives synthesis as cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibitors by rheumatoid arthritis, Balkan Journal of Health Science, 1(1); 6–11.
  • 39. Proesser, R.S. and Sibley, P.K. (2015). Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and maure amendments, and wastewater irrigation. Environmental International, 75:223–233.
  • 40. Ramesh, S. and Mekala, L (2018). Treatment of Textile Wastewater Using Moringa Oleifera and Tamarindus indica. International Research Journal of Engineering and Technology. 6(171): 3891–3895.
  • 41. Satterfield, C. N. (1996). Heterogeneous Catalysis in Industrial Practice. Boston MA: Krieger Company
  • 42. Sirocki, A.R., Lanza, R.A., & Connors, S.C. (2013). Removal of Ibuprofen from Drinking Water using Adsorption. Retrieved from https://digitalcommons.wpi.edu/mqp-all/2716.
  • 43. Shirani, Z.; Santhosh, C.; Iqbal, J. and Bhatnagi, A. 2018. Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants. Journal of Environmental Management. 227: 95–106.
  • 44. Soudabeh, S.; Pasi, T.; Narendra, K. and Kari, E. (2018). Advanced oxidation process for the removal of ibuprofen from aqueous solution: a non-catalytic and catalytic ozonation study in a semi-batch reactor. Applied Catalysis B: Environment. 230: 77–90.
  • 45. Smook, T.M.; Zho, H. and Zytner, R.G. (2008). Removal of ibuprofen from wastewater: comparing biodegradation in conventional, membrane bioreactor, and biological nutrient removal treatment systems. Water Science and Technology. 57(1): 1–8.
  • 46. Szymonik, A.; Lach, J. and Malinska, K. (2017). Fate and Removal of Pharmaceuticals and Illegal Drugs Present in Drinking Water and Wastewater. Ecological Chemistry and Engineering S, 24(1):65–84.
  • 47. Tan C.S., Makky E.A., Ali, E.N. (2013). Impact of Moringa oleifera in Waste Water Treatment. Conference: National Conference on Industry-Academia Initiatives in Biotechnology (CIA: Biotech 13).
  • 48. Touraud, E.; Roig, B.; Sumpter, J. and Coetsier, C. (2011). Drug residues and endocrine disruptors in drinking water: Risk for humans? International Journal of hygiene and environmental health. 214(8): 437–441.
  • 49. Vieno, N.; Tuhkanen, T. and Kronberg, L. (2006). Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation. Environmental Technology. 27(2):183–192.
  • 50. Wang, S. 2008. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Journal of Dyes and Pigments, 76(3), 714–720.
  • 51. Yao, J. H.; Niu, D.K.; Li, Z.J.; Liang, Y.C. and Zhang, S.Q. 2010. Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Sci Agric Sin. 43:721–728.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ebba61d-5f0b-40f1-b9bf-14d69ec0f479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.