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Abstract

Let F be a field of characteristic p > 0, S = F[[X]], S* the unit group of
S, and W a subgroup of S*. We characterize finite groups depending on a pro-
jective (S, W)-representation type. We also give necessary and sufficient condi-
tions for a finite group and its Sylow p-subgroups to be of the same projective
(S, W)-representation type.

1. Introduction

Throughout this paper, we use the following notations: p > 2 is a prime;
N is the set of all positive integers; F' is a field of characteristic p > 0;
S = F[[X]] is the F-algebra of formal power series in the indeterminate X
with coefficients in F'; S* is the unit group of S; W is a subgroup of S*;
Z%(G,W) is the group of all W-valued normalized 2-cocycles of the group
G that acts trivially on W; G is a finite group of order |G|; e is the identity
element of G; G’ is the commutant of G; G, is a Sylow p-subgroup of G; C,
is a Sylow p-subgroup of G'. We assume that C,, C G, hence G}, C C,.
Given a cocycle A\: G x G — S* in Z%(G,S*), we denote by S*G the
twisted group ring of the group G over the ring S with the cocycle A.
An S-basis {uy: g € G} of SAG satisfying uqup = AapUay for all a,b € G
is called natural. If H is a subgroup of GG, then the restriction of a cocycle
\: G x G — 8* to H x H will also be denoted by \. In this case S*H is a
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subring of S*G. By an S*G-module we mean a finitely generated left S*G-
module which is S-free, that is, an S*G-lattice (see [6, p. 140]). We denote by
[M] the isomorphism class of S*G-modules that contains an S*G-module
M. Moreover, by Indg(S*G) we denote the set of all [V], where V is an
indecomposable S*G-module of S-rank d.

If M is an S*G-module, then we denote by My the module M viewed
as an S* H-module. If N is an S* H-module, then N& = S G ®@gxy N is the
induced S*G-module.

If W is a subgroup of F™*, then ip(W) is the supremum of the set that
consists of 0 and all positive integers m such that an F-algebra of the form

FIX]/(XP — a1) ®p ... ®p FIX]/(X? — am)

is a field for some aq,... ,q,, € W.

In this paper, we continue the characterization of finite groups depend-
ing on a projective representation types as begun in [3], [4].

In Section 2, we present a number of propositions about the representa-
tions types of twisted group rings which are based on the results of Gaschiitz
[7] on relative projective and injective modules over group rings (see [5,
pp. 426-430], [6, pp. 449-453]). In Section 3, we single out finite groups of
every projective representation type in a sense of definitions in paper [3]
(see also Section 3). We prove that if G is a finite group and |C,| > 2, then
G is of purely strongly unbounded projective (S,S*)-representation type
(Proposition 7). Assume that p # 2 and W is a subgroup of F*. A group
G is of purely strongly unbounded projective (.S, W)-representation type if
and only if |C,| # 1 or G, is a direct product of [ cyclic subgroups, where
[ > ip(W)+ 1 (Theorem 1). We also establish that if p = 2 and |Cy| # 2,
then G is of purely strongly unbounded projective (S, F*)-representation
type if and only if one of the following conditions holds: 1) |Cs| > 2; 2) Go
is a direct product of [ cyclic subgroups, where [ > ip(F*) + 2; 3) G is a
direct product of ip(F*) + 1 cyclic subgroups whose orders are not equal to
2 (Theorem 2).

In Section 4, we characterize a finite group G such that G and G, are
of the same projective representation type over S = F[[X]]. If C, = G|,
or |G},| > 2, then the groups G' and G, are of the same projective (.5, W)-
representation type for any subgroup W of the group S* (Proposition 10).
Let p # 2, W be a subgroup of F*, |C}| # 1 and |G| = 1. We prove that the
groups G and G, are of the same projective (S, W)-representation type if and
only if G, is a direct product of r cyclic subgroups, where r > ip(W) + 1
(Proposition 11). Let p = 2, G be a finite group such that |C3| > 2 and
|G| = 1. We establish that the groups G and G are of the same projective
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(S, F*)-representation type if and only if one of the following conditions is
satisfied:

(i) G is a direct product of I cyclic subgroups, where [ > ip(F*) + 2;

(ii) Gy is a direct product of ip(F™*) + 1 cyclic subgroups whose orders
are not equal to 2 (Proposition 12).

We remark that our investigations were considerably stimulated by the
well-known Brauer-Thrall conjectures for finite-dimensional algebras over an
arbitrary field (see [1, p. 138] for a formulation of the conjectures).

2. The representation types of twisted group rings

Proposition 1. Let G be a finite group, G) a Sylow p-subgroup of G,
A€ Z%(G,S*) and M an S*G-module. Then M is isomorphic to an S*G-
component of (Me,)¢.

The proof of the Proposition 1 is similar to the proof of the analogous
proposition for K G-modules, where K is a field of characteristic p > 0 (see
[5, pp. 429-430]).

Proposition 2. Let G be a finite group, H a subgroup of G, A € Z*(G, S*)
and W an S*H-module. Then W is isomorphic to an S*H -component of
(Wn.

The proof of the Proposition 2 is the same as the proof of analogous
proposition for KG-modules, where K is a field of characteristic p > 0
(see [5, p. 430)).

We recall that S*G is of finite (vesp. infinite) representation type if
the set of all isomorphism classes of indecomposable S*G-modules is finite
(resp. infinite). Let D(S*G) be the set of S-ranks of all indecomposable S*G-
modules. If D(S*Q) is finite (resp. infinite), then S*G' is of bounded (resp.
unbounded) representation type. We say that S*G is of SUR-type (Strongly
Unbounded Representation type) if there exists a function fy: N — N such
that fy(n) > n and Indy, (,)(S*G) is an infinite set for every n > 1.

Proposition 3. Let G be a finite group and A € Z*(G,S*). Then S G is
of finite (resp. infinite) representation type if and only if S)‘Gp is of finite
(resp. infinite) representation type.

P r oo f. Apply Propositions 1 and 2.

Proposition 4. Let G be a finite group and A € Z*(G,S*). Then S G is
of bounded (resp. unbounded) representation type if and only if S’\Gp s of
bounded (resp. unbounded) representation type.



66 Dariusz Klein

P r o o f. Apply Propositions 1 and 2.

Proposition 5. Let G be a finite group and X € Z*(G,S*). Then S G is
of SUR-type if and only if S)‘Gp is of SUR-type

P r o o f. Assume that S*G is of SUR-type. Then there exists an infi-
nite subset T of the set N such that Ind,(S*G) is infinite for any n € T.
Let [M] € Ind,,(S*G). In view of Proposition 1, M is isomorphic to an
S*G-component of (MGP)G. Hence there is an indecomposable S*G,-module
W such that W% = M @V for some S*G-module V and n|G|™! < d < n,
where d is the S-rank of W. It follows that there exists a natural number
dy(n) such that
n|G|™t < dy(n) <n

and Indg, (n)(S)‘Gp) is an infinite set for every n € T. Consequently S)‘Gp is
of SUR-type.

Conversely, let S*G), be of SUR-type. Suppose that Ind, (S*G)) is infi-
nite for any n € (2, where { is an infinite subset of N. Let [V] € Ind,,(S*G)).
By Proposition 2, V is isomorphic to S)‘Gp—component of (VG)GP. It fol-
lows that there exists an indecomposable S*G-module M such that n <
dimM < n-|G| and Mg, =V & W for some S*Gy-module W. The pre-
ceding arguments shows that there exists a function fy: 2 — N such that
n < fa(n) < n-|G| and Indy, ) (S*G) is an infinite set for every n € €.
Therefore S*G is of SUR-type.

O

Lemma 1 (see [3, pp. 277, 279]). Let G, be a finite p-group, S = F[[X]]
and X € Z*(G, F*).

(i) If p # 2 and the algebra FAG is not semisimple, then the ring S*G
is of SUR-type.

(i) If p = 2 and the algebra FAG is not semisimple, then the set
Ind;(S*G) is infinite for some | < |G].

Lemma 2 (see [3, p. 280]). Let G), be a finite p-group, S = F[[X]] and
A € Z%(G,S*). Assume that G contains a subgroup H such that |H| > 2
and the restriction of X to H x H is a coboundary. Then S*G is of SUR-

type.

Let G, be a finite p-group, W a subgroup of S*, \: G, x G, — W
a 2-cocycle. Denote by Ker(\) the union of all cyclic subgroups (g) of Gy,
such that the restriction of A to (g) x (g) is a W-valued coboundary. The set
Ker()) is called the kernel of A € Z?(G,, W) (see [3, p. 269]). We recall that
G, C Ker(\), Ker(\) is a normal subgroup of G, and up to cohomology in
Zg(G, W) Aga=Aag=1forall g€ G, aecKer(A).
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Let G be a finite group, G), a Sylow p-subgroup of G, C, a Sylow
p-subgroup of G’ and Cp, C G)p. Assume that X € Z%(G,W) and p is the
restriction of X to G, x G,,. Then C), C Ker(u) [9, p. 42].

Suppose that G is a finite group and p | |G’|. The group G/G" is a
direct product of its Sylow g-subgroups G,G'/G’, where G, is a Sylow ¢-
subgroup of G and ¢ is a prime divisor of |G : G’|. The group G,/C), is
isomorphic to the G,G'/G’. Assume that ¢: G — G/G’ is the canonical
homomorphism, ¢: G/G' — G,G'/G’ is a projector and x: G,G'/G" —
G,/C, is the isomorphism defined by x(¢9G’) = gC,, for every g € Gp. Then

fi=xve (1)

is a homomorphism of G onto G,/C,. The restriction of f to G, is the
canonical homomorphism of G, onto G,/C,.

Lemma 3. Let f: G — H be the homomorphism (1), where H = Gp,/C,.
If W is a subgroup of S*, u € Z*(H,W) and

Aap = Hf(a),f(b)

for all a,b € G, then \: (a,b) — Aup belongs to Z2(G, W) and Ay y = Ayz =
1 for all x € Gp, y € Cp. Moreover, if {ug: g € G} is a natural S-basis of
S’\Cp = SCp, then the set

V= Z S)‘Gp(ug—ue)

geCp,g7-e
is an ideal of the ring S*G), and S*G,/V = SFH.

P r o o f. Direct calculation.

3. Projective representation types of finite groups

We recall from [2] that a projective (S, W)-representation of the group
G of degree n is a mapping I': G — GL(n,S) such that I'(e) = E
and I'(a)I'(b) = A\gpl'(ab), where A\, € W for all a,b € G. It is easy
to see that A: (a,b) — M, belongs to Z2(G,W). We also say that T
is a projective (S, W)-representation of G with cocycle \. Two projective
(S, W)-representations I'y and I's of G are called equivalent if there ex-
ists an invertible matrix C' over S and elements ay € W (g € G) such
that C7'T1(g9)C = a,I'2(g) for every g € G. If W = S*, then T is called
a projective S-representation of G. If W = {1}, then T" is called a lin-
ear S-representation of G. By analogy with indecomposable projective S-
representations of G (see [9, p. 108]), we can introduce the concept of an
indecomposable projective (S, W)-representation of the group G.
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Now we recall from [3] the concept of projective representation type
of finite group. A group G is said to be of finite projective (S,W)-
representation type if the number of (inequivalent) indecomposable pro-
jective (S, W)-representations of G with cocycle A is finite for any
A € Z%(G,W). Otherwise, G is of infinite projective (S, W)-representation
type. We say that G is of purely infinite projective (S, W)-representation
type, if the number of indecomposable projective (S, W')-representations of
G with cocycle ) is infinite for any A € Z2(G,W). A group G is defined
to be of bounded projective (S, W')-representation type if the set of degrees
of all indecomposable projective (S, W )-representations of G with cocycle
A is finite for every A € Z2(G,W). Otherwise, G is said to be of un-
bounded projective (S, W)-representation type. We say that G is of purely
unbounded projective (S, W)-representation type if the set of degrees of all
indecomposable projective (S, W)-representations of G with cocycle A is
infinite for each A € Z2(G,W). A group G is of strongly unbounded pro-
jective (S, W)-representation type if for some cocycle A € Z2(G, W) there
is a function fy: N — N such that fy(n) > n and the number of inde-
composable projective (S, W)-representations of G with cocycle A and of
degree fy(n) is infinite for all n > 1. If there is such a function f for every
A\ € Z2(G, W), then G is said to be of purely strongly unbounded projective
(S, W)-representation type.

Lemma 4 (see [3, p. 283]). Let S = F[[X]], W be a subgroup of F*, G
a finite p-group and G/G' a direct product of r cyclic subgroups, where
r>ip(W)+1 forp > 2 and r > ip(W)+ 2 for p = 2. Then G is of
purely strongly unbounded projective (S, W')-representation type.

Lemma 5 (see [3, p.283]). Let G be a finite Abelian p-group and
S = FIX]].

(i) Assume that W C F* and p # 2. Then G is of purely strongly
unbounded projective (S, W)-representation type if and only if G is a direct
product of | cyclic subgroups, where | > ip(W) + 1.

(ii) Let p = 2. Then G is of purely strongly unbounded projective
(S, F*)-representation type if and only if one of the following conditions is
satisfied: 1) G is a direct product of | cyclic subgroups, where | > ip(F*)+2;
2) G is a direct product of ip(F*) 41 cyclic subgroups whose orders are not
equal to 2.

Proposition 6. Let G be a finite group, p | |G|, S = F[[X]] and W a sub-
group of S*.

(i) A group G is of bounded projective (S, W)-representation type if and
only if p=2 and |Ga| = 2.

(i) A group G is of unbounded projective (S, W')-representation type if
and only if G is of strongly unbounded projective (S, W)-representation type.
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Proof. (i) If G is of bounded projective (S, W)-representation type, then
the group ring SG is of bounded representation type. It follows, by [8], that
p = 2 and |Ga| = 2. Conversely, if p = 2 and |G3| = 2 then, by Proposi-
tion 6 from [3], the group G is of bounded projective (S, W)-representation
type. In view of Proposition 4, G also is of bounded projective (S, W)-
representation type.

(ii) If |Gpp| > 2 then, by Theorem 1 from [3] and Proposition 5, the group
ring SG is of strongly unbounded representation type. O

Proposition 7. Let S = F[[X]] and G be a finite group such that |Cp| >
2. Then G is of purely strongly unbounded projective (S, S*)-representation

type.

Proof Let A € Z*(G,S*) and p be the restriction of X to G, x G,. Since
C, C Ker(p), S*C, is the group ring of C), over S. By Lemma 2, the ring
S’\Gp is of SUR-type. It follows from this and Proposition 5 that S*G is of
SUR-type for any A € Z%(G, S*). Hence, G is of purely strongly unbounded
projective (.S, S*)-representation type. O

Theorem 1. Let p # 2 and W be a subgroup of F™*.

(i) A group G is of purely strongly unbounded projective
(S, W)-representation type if and only if |Cp| # 1 or G, is a direct
product of | cyclic subgroups, where | > ip(W) + 1.

(ii)) A group G is of purely strongly unbounded projective
(S, W)-representation type if and only if G is of purely unbounded
projective (S, W)-representation type.

Proof (i) If |Cy| # 1 then, by Proposition 7, G is of purely strongly
unbounded projective (S, W )-representation type. Let |C,| = 1. In view
of Lemma 3, for every cocycle p € Z2(Gp,5*) there exists a cocycle
X\ € Z%(G,S*) such that the restriction of A to G, x G, is equal to p.
It follows from this and Proposition 5 that G is of purely strongly un-
bounded projective (S,W)-representation type if and only if G, is of
purely strongly unbounded projective (S, W)-representation type. Applying
Lemma 5, we conclude that G is of purely strongly unbounded projective
(S, W)-representation type if and only if G, is a direct product of I cyclic
subgroups, where [ > ip(W) + 1.

(ii) Let |Cp| = 1 and G), be a direct product of r cyclic subgroups, where
r < ip(W). Then there exists a cocycle u € Z%(Gp, W) such that FFG), is a
field. Let K = F*G,. We have SFG), = K[[X]]. It follows that the ring S*G),
is of finite representation type. By Lemma 3, there is a cocycle A € Z2(G, W)
such that the restriction of A to G, x G}, is equal to p. In view of Proposition
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3, the ring S*G is of finite representation type. Hence, G is not of purely
unbounded projective (S, W)-representation type. O

Theorem 2. Let S = F[[X]], where F is a field of characteristic 2.

(i) Let W be a subgroup of F* and Go/Csy a direct product of r cyclic
subgroup, where r > ip(W) + 2. Then G is of purely strongly unbounded
projective (S, W)-representation type.

(ii) Let |Cq| # 2. A group G is of purely strongly unbounded projective
(S, F*)-representation type if and only if one of the following conditions is
satisfied: 1) |Co| > 2; 2) Go is a direct product of | cyclic subgroups, where
I > ip(F*) 4+ 2; 8) Ga is a direct product of ip(F*)+ 1 cyclic subgroups
whose orders are not equal to 2.

(iii) Let |Ca| # 2. A group G is of purely strongly unbounded projective
(S, F*)-representation type if and only if G is of purely unbounded projective
(S, F*)-representation type.

P roof. (i) By Lemma 4, Gy is of purely strongly unbounded projective
(S, W)-representation type. It follows from this and Proposition 5 that G is
of purely strongly unbounded projective (S, W)-representation type.

(ii) If |C2| > 2 then, by Proposition 7, G is of purely strongly un-
bounded projective (S, F*)-representation type. Let |Cy| = 1. In view of
Lemma 3 and Proposition 5, G is of purely strongly unbounded projective
(S, F*)-representation type if and only if G5 is of purely strongly unbounded
projective (S, F™*)-representation type. Applying Lemma 5, we finish the
proof.

(iii) Assume that |Ca| = 1. If G3 is a direct product of r cyclic subgroup,
where r < ip(F*), then there exists a cocycle u € Z2(Ga, F*) such that
FPGs is a field. It follows that S#Gy is of finite representation type. By
Lemma 3, there is a cocycle A € Z2(G, F*) such that the restriction of \ to
Gy x Gy is equal to p. In view of Proposition 3, the ring S*G is of finite
representation type.

Let Gy = H x (a), where |a|] = 2 and H is a direct product of
ir(F*) cyclic subgroups. There exists a cocycle pu € Z%(Go, F*) such that
FFrGy = FFH ®@F F(a), where F*H is a field and F(a) is the group algebra
of (a) over F. Let K = F'H and R = K[[X]]. Then S*G5 is the group ring
R{a). It follows, by Proposition 6, that S*G5 is of bounded representation
type. By Lemma 3, there is a cocycle A € Z2(G, F'*) such that the restriction
of A to G2 x Gy is equal to p. The ring S*G is of bounded representation type,
in view of Proposition 4. Hence, G is not of purely unbounded projective
(S, F*)-representation type. O
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4. Isotypic conditions for groups G and G,

In this Section, we assume that G is a finite group, p | |G|, G, is a Sylow
p-subgroup of G, C), is a Sylow p-subgroup of G’ and C,, C G,,.

Two groups are said to be P(S, W) R-isotypic if they are of the same
projective (S, W)-representation type. From the above results, we will derive
necessary and sufficient conditions for G and G, to be P(S, W) R-isotypic.

Proposition 8. Let S = F[[X]] and W be a subgroup of F*. The groups
G and G, are of purely infinite projective (S, W')-representation type if and
only if one of the following conditions is satisfied: 1) ]G;,\ #1;2) Gy is a
direct product of  cyclic subgroups, where | > ip(W) + 1.

P r o o f. Suppose that one of the conditions 1), 2) is satisfied. Then an
algebra F*G), is not semisimple for any A € Z?(G,, W). In view of Lemma
1, the ring S)‘Gp is of infinite representation type. Applying Proposition
3, we conclude that S*G is of infinite representation type for each p €
Z%(Gp, W). Hence, the groups G and G, are of purely infinite projective
(S, W)-representation type.

Let G, be a direct product of r cyclic subgroups, where r < ip(W). Then
there is a cocycle p € Z*(Gp, W) such that FFG), is a field. Let K = FFG),.
We have S*G,, = K[[X]], and so every indecomposable S*Gp-module is iso-
morphic to S#G),. Since the ring S*G,, is of finite representation type, the
group G, is not of purely infinite projective (S, W)-representation type. [

Proposition 9. Let S = F[[X]] and W be a subgroup of S*.

(i) The groups G and G, are of bounded projective (S, W)-representation
type if and only if p =2 and |G| = 2.

(it) If the groups G and G, are of unbounded projective (S,W)-
representation type, then G' and G, are also of strongly unbounded projective
(S, W)-representation type.

P r o o f. Apply Proposition 6.

Proposition 10. Let G be a finite group and S = F|[[X]].

(i) If Cp, = G, then the groups G and G), are P(S, W) R-isotypic for any
subgroup W of the group S*.

(ii) If |G;,| > 2 then G and G, are of purely strongly unbounded projec-
tive (S, S*)-representation type.

Proof (i) If Cp = G), then, by Lemma 3, for every p € Z*(Gp, W) there
exists a cocycle A € Z2(G,W) such that the restriction of A to G, x G,
is equal to u. In view of Propositions 3-5, the rings S*G and S’\Gp are of
the same representation type. Hence the groups G and G, are P(S,W)R-
isotypic.
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(ii) If [G},| > 2 then |Cy| > 2. By Proposition 7, G and G, are of purely
strongly unbounded projective (S, S*)-representation type. O

Proposition 11. Assume that G is a finite group, p # 2, S = F[[X]] and
W is a subgroup of F™*.

(i) Let |Cp| # 1 and |G| = 1. The groups G and G, are P(S,W)R-
isotypic if and only if Gy is a direct product of v cyclic subgroups, where
T Z ZF(W) + 1.

(i1) Let G, be a direct product of r cyclic subgroups, where
r>ip(W)+1. Then G and G, are of purely strongly unbounded projec-
tive (S, W)-representation type.

Proof (i) If |Cp| # 1 then |C,| > 2. It follows, by Proposition 7, that
G is of purely strongly unbounded projective (S, W)-representation type. In
view of Theorem 1, the Abelian group G, is of purely strongly unbounded
projective (S, W)-representation type if and only if G, is a direct product
of r cyclic subgroups, where r > ip(W) + 1.

(ii) Apply (i) and Proposition 5. O

Proposition 12. Let p = 2, S = F[[X]], G be a finite group such that
|Ca| > 2 and |GS| = 1. The groups G and Gy are P(S, F*) R-isotypic if and
only if one of the following conditions is satisfied:

(i) G is a direct product of | cyclic subgroups, where | > ip(F™*) + 2;

(ii) G is a direct product of ip(F™*) 4+ 1 cyclic subgroups whose orders
are not equal to 2.

Moreover, if one of the conditions (i), (ii) is satisfied, then G and Go
are of purely strongly unbounded projective (S, F*)-representation type.

Proof. If |Co| > 2 then, by Proposition 7, the group G is of purely strongly
unbounded projective (.S, F™*)-representation type. By Theorem 2, the group
G5 is of purely strongly unbounded projective (.S, F*)-representation type if
and only if one of the conditions (i), (ii) is satisfied. O
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