THE PROJECTIVE REPRESENTATIONS TYPES OF FINITE GROUPS OVER A RING OF FORMAL POWER SERIES

Dariusz Klein

Institute of Mathematics Pomeranian University of Slupsk Arciszewskiego 22b, 76-200 Slupsk, Poland e-mail: darekklein@poczta.onet.pl

Abstract

Let F be a field of characteristic p > 0, S = F[X], S^* the unit group of S, and W a subgroup of S^* . We characterize finite groups depending on a projective (S, W)-representation type. We also give necessary and sufficient conditions for a finite group and its Sylow p-subgroups to be of the same projective (S, W)-representation type.

1. Introduction

Throughout this paper, we use the following notations: $p \geq 2$ is a prime; \mathbb{N} is the set of all positive integers; F is a field of characteristic p > 0; S = F[[X]] is the F-algebra of formal power series in the indeterminate X with coefficients in F; S^* is the unit group of S; W is a subgroup of S^* ; $Z^2(G,W)$ is the group of all W-valued normalized 2-cocycles of the group G that acts trivially on W; G is a finite group of order |G|; e is the identity element of G; G' is the commutant of G; G_p is a Sylow p-subgroup of G'. We assume that $C_p \subset G_p$, hence $G'_p \subset C_p$.

Given a cocycle $\lambda \colon G \times G \to S^*$ in $Z^2(G, S^*)$, we denote by $S^{\lambda}G$ the twisted group ring of the group G over the ring S with the cocycle λ . An S-basis $\{u_g \colon g \in G\}$ of $S^{\lambda}G$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a,b \in G$ is called natural. If H is a subgroup of G, then the restriction of a cocycle $\lambda \colon G \times G \to S^*$ to $H \times H$ will also be denoted by λ . In this case $S^{\lambda}H$ is a

subring of $S^{\lambda}G$. By an $S^{\lambda}G$ -module we mean a finitely generated left $S^{\lambda}G$ -module which is S-free, that is, an $S^{\lambda}G$ -lattice (see [6, p. 140]). We denote by [M] the isomorphism class of $S^{\lambda}G$ -modules that contains an $S^{\lambda}G$ -module M. Moreover, by $\operatorname{Ind}_d(S^{\lambda}G)$ we denote the set of all [V], where V is an indecomposable $S^{\lambda}G$ -module of S-rank d.

If M is an $S^{\lambda}G$ -module, then we denote by M_H the module M viewed as an $S^{\lambda}H$ -module. If N is an $S^{\lambda}H$ -module, then $N^G = S^{\lambda}G \otimes_{S^{\lambda}H} N$ is the induced $S^{\lambda}G$ -module.

If W is a subgroup of F^* , then $i_F(W)$ is the supremum of the set that consists of 0 and all positive integers m such that an F-algebra of the form

$$F[X]/(X^p - \alpha_1) \otimes_F \ldots \otimes_F F[X]/(X^p - \alpha_m)$$

is a field for some $\alpha_1, \ldots, \alpha_m \in W$.

In this paper, we continue the characterization of finite groups depending on a projective representation types as begun in [3], [4].

In Section 2, we present a number of propositions about the representations types of twisted group rings which are based on the results of Gaschütz [7] on relative projective and injective modules over group rings (see [5, pp. 426-430, [6, pp. 449-453]). In Section 3, we single out finite groups of every projective representation type in a sense of definitions in paper [3] (see also Section 3). We prove that if G is a finite group and $|C_p| > 2$, then G is of purely strongly unbounded projective (S, S^*) -representation type (Proposition 7). Assume that $p \neq 2$ and W is a subgroup of F^* . A group G is of purely strongly unbounded projective (S, W)-representation type if and only if $|C_p| \neq 1$ or G_p is a direct product of l cyclic subgroups, where $l \geq i_F(W) + 1$ (Theorem 1). We also establish that if p = 2 and $|C_2| \neq 2$, then G is of purely strongly unbounded projective (S, F^*) -representation type if and only if one of the following conditions holds: 1) $|C_2| > 2$; 2) G_2 is a direct product of l cyclic subgroups, where $l \geq i_F(F^*) + 2$; 3) G_2 is a direct product of $i_F(F^*) + 1$ cyclic subgroups whose orders are not equal to 2 (Theorem 2).

In Section 4, we characterize a finite group G such that G and G_p are of the same projective representation type over S = F[[X]]. If $C_p = G'_p$ or $|G'_p| > 2$, then the groups G and G_p are of the same projective (S, W)-representation type for any subgroup W of the group S^* (Proposition 10). Let $p \neq 2$, W be a subgroup of F^* , $|C_p| \neq 1$ and $|G'_p| = 1$. We prove that the groups G and G_p are of the same projective (S, W)-representation type if and only if G_p is a direct product of r cyclic subgroups, where $r \geq i_F(W) + 1$ (Proposition 11). Let p = 2, G be a finite group such that $|C_2| > 2$ and $|G'_2| = 1$. We establish that the groups G and G_2 are of the same projective

- (S, F^*) -representation type if and only if one of the following conditions is satisfied:
 - (i) G_2 is a direct product of l cyclic subgroups, where $l \geq i_F(F^*) + 2$;
- (ii) G_2 is a direct product of $i_F(F^*) + 1$ cyclic subgroups whose orders are not equal to 2 (Proposition 12).

We remark that our investigations were considerably stimulated by the well-known Brauer-Thrall conjectures for finite-dimensional algebras over an arbitrary field (see [1, p. 138] for a formulation of the conjectures).

2. The representation types of twisted group rings

Proposition 1. Let G be a finite group, G_p a Sylow p-subgroup of G, $\lambda \in Z^2(G, S^*)$ and M an $S^{\lambda}G$ -module. Then M is isomorphic to an $S^{\lambda}G$ -component of $(M_{G_p})^G$.

The proof of the Proposition 1 is similar to the proof of the analogous proposition for KG-modules, where K is a field of characteristic p > 0 (see [5, pp. 429-430]).

Proposition 2. Let G be a finite group, H a subgroup of G, $\lambda \in Z^2(G, S^*)$ and W an $S^{\lambda}H$ -module. Then W is isomorphic to an $S^{\lambda}H$ -component of $(W^G)_H$.

The proof of the Proposition 2 is the same as the proof of analogous proposition for KG-modules, where K is a field of characteristic p > 0 (see [5, p. 430]).

We recall that $S^{\lambda}G$ is of finite (resp. infinite) representation type if the set of all isomorphism classes of indecomposable $S^{\lambda}G$ -modules is finite (resp. infinite). Let $D(S^{\lambda}G)$ be the set of S-ranks of all indecomposable $S^{\lambda}G$ modules. If $D(S^{\lambda}G)$ is finite (resp. infinite), then $S^{\lambda}G$ is of bounded (resp. unbounded) representation type. We say that $S^{\lambda}G$ is of SUR-type (Strongly Unbounded Representation type) if there exists a function $f_{\lambda} \colon \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $Ind_{f_{\lambda}(n)}(S^{\lambda}G)$ is an infinite set for every n > 1.

Proposition 3. Let G be a finite group and $\lambda \in Z^2(G, S^*)$. Then $S^{\lambda}G$ is of finite (resp. infinite) representation type if and only if $S^{\lambda}G_p$ is of finite (resp. infinite) representation type.

Proof. Apply Propositions 1 and 2.

Proposition 4. Let G be a finite group and $\lambda \in Z^2(G, S^*)$. Then $S^{\lambda}G$ is of bounded (resp. unbounded) representation type if and only if $S^{\lambda}G_p$ is of bounded (resp. unbounded) representation type.

Proof. Apply Propositions 1 and 2.

Proposition 5. Let G be a finite group and $\lambda \in Z^2(G, S^*)$. Then $S^{\lambda}G$ is of SUR-type if and only if $S^{\lambda}G_p$ is of SUR-type

P r o o f. Assume that $S^{\lambda}G$ is of SUR-type. Then there exists an infinite subset T of the set \mathbb{N} such that $\mathrm{Ind}_n(S^{\lambda}G)$ is infinite for any $n \in T$. Let $[M] \in \mathrm{Ind}_n(S^{\lambda}G)$. In view of Proposition 1, M is isomorphic to an $S^{\lambda}G$ -component of $(M_{G_p})^G$. Hence there is an indecomposable $S^{\lambda}G_p$ -module W such that $W^G \cong M \oplus V$ for some $S^{\lambda}G$ -module V and $n|G|^{-1} \leq d \leq n$, where d is the S-rank of W. It follows that there exists a natural number $d_{\lambda}(n)$ such that

$$n|G|^{-1} \le d_{\lambda}(n) \le n$$

and $\operatorname{Ind}_{d_{\lambda}(n)}(S^{\lambda}G_p)$ is an infinite set for every $n \in T$. Consequently $S^{\lambda}G_p$ is of SUR-type.

Conversely, let $S^{\lambda}G_p$ be of SUR-type. Suppose that $\operatorname{Ind}_n(S^{\lambda}G_p)$ is infinite for any $n \in \Omega$, where Ω is an infinite subset of $\mathbb N$. Let $[V] \in \operatorname{Ind}_n(S^{\lambda}G_p)$. By Proposition 2, V is isomorphic to $S^{\lambda}G_p$ -component of $(V^G)_{G_p}$. It follows that there exists an indecomposable $S^{\lambda}G$ -module M such that $n \leq \dim M \leq n \cdot |G|$ and $M_{G_p} \cong V \oplus W$ for some $S^{\lambda}G_p$ -module W. The preceding arguments shows that there exists a function $f_{\lambda} \colon \Omega \to \mathbb N$ such that $n \leq f_{\lambda}(n) \leq n \cdot |G|$ and $\operatorname{Ind}_{f_{\lambda}(n)}(S^{\lambda}G)$ is an infinite set for every $n \in \Omega$. Therefore $S^{\lambda}G$ is of SUR-type.

Lemma 1 (see [3, pp. 277, 279]). Let G_p be a finite p-group, S = F[[X]] and $\lambda \in Z^2(G, F^*)$.

(i) If $p \neq 2$ and the algebra $F^{\lambda}G$ is not semisimple, then the ring $S^{\lambda}G$ is of SUR-type.

(ii) If p = 2 and the algebra $F^{\lambda}G$ is not semisimple, then the set $\operatorname{Ind}_{l}(S^{\lambda}G)$ is infinite for some $l \leq |G|$.

Lemma 2 (see [3, p. 280]). Let G_p be a finite p-group, S = F[[X]] and $\lambda \in Z^2(G, S^*)$. Assume that G contains a subgroup H such that |H| > 2 and the restriction of λ to $H \times H$ is a coboundary. Then $S^{\lambda}G$ is of SURtype.

Let G_p be a finite p-group, W a subgroup of S^* , $\lambda \colon G_p \times G_p \to W$ a 2-cocycle. Denote by $\operatorname{Ker}(\lambda)$ the union of all cyclic subgroups $\langle g \rangle$ of G_p such that the restriction of λ to $\langle g \rangle \times \langle g \rangle$ is a W-valued coboundary. The set $\operatorname{Ker}(\lambda)$ is called the kernel of $\lambda \in Z^2(G_p, W)$ (see [3, p. 269]). We recall that $G'_p \subset \operatorname{Ker}(\lambda)$, $\operatorname{Ker}(\lambda)$ is a normal subgroup of G_p , and up to cohomology in $Z^2(G, W)$ $\lambda_{q,a} = \lambda_{a,q} = 1$ for all $g \in G$, $a \in \operatorname{Ker}(\lambda)$.

Let G be a finite group, G_p a Sylow p-subgroup of G, C_p a Sylow p-subgroup of G' and $C_p \subset G_p$. Assume that $\lambda \in Z^2(G, W)$ and μ is the restriction of λ to $G_p \times G_p$. Then $C_p \subset \text{Ker}(\mu)$ [9, p. 42].

Suppose that G is a finite group and $p \mid |G'|$. The group G/G' is a direct product of its Sylow q-subgroups G_qG'/G' , where G_q is a Sylow q-subgroup of G and q is a prime divisor of |G:G'|. The group G_p/C_p is isomorphic to the G_pG'/G' . Assume that $\varphi\colon G\to G/G'$ is the canonical homomorphism, $\psi\colon G/G'\to G_pG'/G'$ is a projector and $\chi\colon G_pG'/G'\to G_p/C_p$ is the isomorphism defined by $\chi(gG')=gC_p$ for every $g\in G_p$. Then

$$f := \chi \psi \varphi \tag{1}$$

is a homomorphism of G onto G_p/C_p . The restriction of f to G_p is the canonical homomorphism of G_p onto G_p/C_p .

Lemma 3. Let $f: G \to H$ be the homomorphism (1), where $H = G_p/C_p$. If W is a subgroup of S^* , $\mu \in Z^2(H, W)$ and

$$\lambda_{a,b} = \mu_{f(a),f(b)}$$

for all $a, b \in G$, then $\lambda: (a, b) \mapsto \lambda_{a,b}$ belongs to $Z^2(G, W)$ and $\lambda_{x,y} = \lambda_{y,x} = 1$ for all $x \in G_p$, $y \in C_p$. Moreover, if $\{u_g : g \in G\}$ is a natural S-basis of $S^{\lambda}C_p = SC_p$, then the set

$$V = \sum_{g \in C_p, g \neq e} S^{\lambda} G_p(u_g - u_e)$$

is an ideal of the ring $S^{\lambda}G_p$ and $S^{\lambda}G_p/V \cong S^{\mu}H$.

Proof. Direct calculation.

3. Projective representation types of finite groups

We recall from [2] that a projective (S,W)-representation of the group G of degree n is a mapping $\Gamma: G \to \operatorname{GL}(n,S)$ such that $\Gamma(e) = E$ and $\Gamma(a)\Gamma(b) = \lambda_{a,b}\Gamma(ab)$, where $\lambda_{a,b} \in W$ for all $a,b \in G$. It is easy to see that $\lambda: (a,b) \mapsto \lambda_{a,b}$ belongs to $Z^2(G,W)$. We also say that Γ is a projective (S,W)-representation of G with cocycle λ . Two projective (S,W)-representations Γ_1 and Γ_2 of G are called equivalent if there exists an invertible matrix C over S and elements $\alpha_g \in W$ $(g \in G)$ such that $C^{-1}\Gamma_1(g)C = \alpha_g\Gamma_2(g)$ for every $g \in G$. If $W = S^*$, then Γ is called a projective S-representation of G. By analogy with indecomposable projective S-representations of G (see [9, p. 108]), we can introduce the concept of an indecomposable projective (S,W)-representation of the group G.

Now we recall from [3] the concept of projective representation type of finite group. A group G is said to be of finite projective (S, W)representation type if the number of (inequivalent) indecomposable projective (S, W)-representations of G with cocycle λ is finite for any $\lambda \in Z^2(G,W)$. Otherwise, G is of infinite projective (S,W)-representation type. We say that G is of purely infinite projective (S, W)-representation type, if the number of indecomposable projective (S, W)-representations of G with cocycle λ is infinite for any $\lambda \in Z^2(G,W)$. A group G is defined to be of bounded projective (S, W)-representation type if the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is finite for every $\lambda \in Z^2(G,W)$. Otherwise, G is said to be of unbounded projective (S, W)-representation type. We say that G is of purely unbounded projective (S, W)-representation type if the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is infinite for each $\lambda \in Z^2(G,W)$. A group G is of strongly unbounded projective (S, W)-representation type if for some cocycle $\lambda \in Z^2(G, W)$ there is a function $f_{\lambda} \colon \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and the number of indecomposable projective (S, W)-representations of G with cocycle λ and of degree $f_{\lambda}(n)$ is infinite for all n > 1. If there is such a function f_{λ} for every $\lambda \in Z^2(G,W)$, then G is said to be of purely strongly unbounded projective (S, W)-representation type.

Lemma 4 (see [3, p. 283]). Let S = F[[X]], W be a subgroup of F^* , G a finite p-group and G/G' a direct product of r cyclic subgroups, where $r \geq i_F(W) + 1$ for p > 2 and $r \geq i_F(W) + 2$ for p = 2. Then G is of purely strongly unbounded projective (S, W)-representation type.

Lemma 5 (see [3, p. 283]). Let G be a finite Abelian p-group and S = F[[X]].

- (i) Assume that $W \subset F^*$ and $p \neq 2$. Then G is of purely strongly unbounded projective (S, W)-representation type if and only if G is a direct product of l cyclic subgroups, where $l \geq i_F(W) + 1$.
- (ii) Let p=2. Then G is of purely strongly unbounded projective (S,F^*) -representation type if and only if one of the following conditions is satisfied: 1) G is a direct product of l cyclic subgroups, where $l \geq i_F(F^*) + 2$; 2) G is a direct product of $i_F(F^*) + 1$ cyclic subgroups whose orders are not equal to 2.

Proposition 6. Let G be a finite group, $p \mid |G|$, S = F[[X]] and W a subgroup of S^* .

- (i) A group G is of bounded projective (S, W)-representation type if and only if p = 2 and $|G_2| = 2$.
- (ii) A group G is of unbounded projective (S, W)-representation type if and only if G is of strongly unbounded projective (S, W)-representation type.

Proof. (i) If G is of bounded projective (S, W)-representation type, then the group ring SG is of bounded representation type. It follows, by [8], that p=2 and $|G_2|=2$. Conversely, if p=2 and $|G_2|=2$ then, by Proposition 6 from [3], the group G_2 is of bounded projective (S, W)-representation type. In view of Proposition 4, G also is of bounded projective (S, W)-representation type.

(ii) If $|G_p| > 2$ then, by Theorem 1 from [3] and Proposition 5, the group ring SG is of strongly unbounded representation type.

Proposition 7. Let S = F[[X]] and G be a finite group such that $|C_p| > 2$. Then G is of purely strongly unbounded projective (S, S^*) -representation type.

Proof. Let $\lambda \in Z^2(G, S^*)$ and μ be the restriction of λ to $G_p \times G_p$. Since $C_p \subset \operatorname{Ker}(\mu)$, $S^{\mu}C_p$ is the group ring of C_p over S. By Lemma 2, the ring $S^{\lambda}G_p$ is of SUR-type. It follows from this and Proposition 5 that $S^{\lambda}G$ is of SUR-type for any $\lambda \in Z^2(G, S^*)$. Hence, G is of purely strongly unbounded projective (S, S^*) -representation type.

Theorem 1. Let $p \neq 2$ and W be a subgroup of F^* .

- (i) A group G is of purely strongly unbounded projective (S, W)-representation type if and only if $|C_p| \neq 1$ or G_p is a direct product of l cyclic subgroups, where $l \geq i_F(W) + 1$.
- (ii) A group G is of purely strongly unbounded projective (S, W)-representation type if and only if G is of purely unbounded projective (S, W)-representation type.
- Proof. (i) If $|C_p| \neq 1$ then, by Proposition 7, G is of purely strongly unbounded projective (S,W)-representation type. Let $|C_p| = 1$. In view of Lemma 3, for every cocycle $\mu \in Z^2(G_p, S^*)$ there exists a cocycle $\lambda \in Z^2(G, S^*)$ such that the restriction of λ to $G_p \times G_p$ is equal to μ . It follows from this and Proposition 5 that G is of purely strongly unbounded projective (S,W)-representation type if and only if G_p is of purely strongly unbounded projective (S,W)-representation type. Applying Lemma 5, we conclude that G is of purely strongly unbounded projective (S,W)-representation type if and only if G_p is a direct product of l cyclic subgroups, where $l \geq i_F(W) + 1$.
- (ii) Let $|C_p|=1$ and G_p be a direct product of r cyclic subgroups, where $r \leq i_F(W)$. Then there exists a cocycle $\mu \in Z^2(G_p, W)$ such that $F^{\mu}G_p$ is a field. Let $K = F^{\mu}G_p$. We have $S^{\mu}G_p \cong K[[X]]$. It follows that the ring $S^{\mu}G_p$ is of finite representation type. By Lemma 3, there is a cocycle $\lambda \in Z^2(G, W)$ such that the restriction of λ to $G_p \times G_p$ is equal to μ . In view of Proposition

3, the ring $S^{\lambda}G$ is of finite representation type. Hence, G is not of purely unbounded projective (S, W)-representation type. \square

Theorem 2. Let S = F[[X]], where F is a field of characteristic 2.

- (i) Let W be a subgroup of F^* and G_2/C_2 a direct product of r cyclic subgroup, where $r \geq i_F(W) + 2$. Then G is of purely strongly unbounded projective (S, W)-representation type.
- (ii) Let $|C_2| \neq 2$. A group G is of purely strongly unbounded projective (S, F^*) -representation type if and only if one of the following conditions is satisfied: 1) $|C_2| > 2$; 2) G_2 is a direct product of l cyclic subgroups, where $l \geq i_F(F^*) + 2$; 3) G_2 is a direct product of $i_F(F^*) + 1$ cyclic subgroups whose orders are not equal to 2.
- (iii) Let $|C_2| \neq 2$. A group G is of purely strongly unbounded projective (S, F^*) -representation type if and only if G is of purely unbounded projective (S, F^*) -representation type.
- P r o o f. (i) By Lemma 4, G_2 is of purely strongly unbounded projective (S, W)-representation type. It follows from this and Proposition 5 that G is of purely strongly unbounded projective (S, W)-representation type.
- (ii) If $|C_2| > 2$ then, by Proposition 7, G is of purely strongly unbounded projective (S, F^*) -representation type. Let $|C_2| = 1$. In view of Lemma 3 and Proposition 5, G is of purely strongly unbounded projective (S, F^*) -representation type if and only if G_2 is of purely strongly unbounded projective (S, F^*) -representation type. Applying Lemma 5, we finish the proof.
- (iii) Assume that $|C_2| = 1$. If G_2 is a direct product of r cyclic subgroup, where $r \leq i_F(F^*)$, then there exists a cocycle $\mu \in Z^2(G_2, F^*)$ such that $F^{\mu}G_2$ is a field. It follows that $S^{\mu}G_2$ is of finite representation type. By Lemma 3, there is a cocycle $\lambda \in Z^2(G, F^*)$ such that the restriction of λ to $G_2 \times G_2$ is equal to μ . In view of Proposition 3, the ring $S^{\lambda}G$ is of finite representation type.
- Let $G_2 = H \times \langle a \rangle$, where |a| = 2 and H is a direct product of $i_F(F^*)$ cyclic subgroups. There exists a cocycle $\mu \in Z^2(G_2, F^*)$ such that $F^{\mu}G_2 = F^{\mu}H \otimes_F F\langle a \rangle$, where $F^{\mu}H$ is a field and $F\langle a \rangle$ is the group algebra of $\langle a \rangle$ over F. Let $K = F^{\mu}H$ and R = K[[X]]. Then $S^{\mu}G_2$ is the group ring $R\langle a \rangle$. It follows, by Proposition 6, that $S^{\mu}G_2$ is of bounded representation type. By Lemma 3, there is a cocycle $\lambda \in Z^2(G, F^*)$ such that the restriction of λ to $G_2 \times G_2$ is equal to μ . The ring $S^{\lambda}G$ is of bounded representation type, in view of Proposition 4. Hence, G is not of purely unbounded projective (S, F^*) -representation type.

4. Isotypic conditions for groups G and G_p

In this Section, we assume that G is a finite group, $p \mid |G|$, G_p is a Sylow p-subgroup of G, C_p is a Sylow p-subgroup of G' and $C_p \subset G_p$.

Two groups are said to be P(S, W) R-isotypic if they are of the same projective (S, W)-representation type. From the above results, we will derive necessary and sufficient conditions for G and G_p to be P(S, W) R-isotypic.

Proposition 8. Let S = F[[X]] and W be a subgroup of F^* . The groups G and G_p are of purely infinite projective (S, W)-representation type if and only if one of the following conditions is satisfied: 1) $|G'_p| \neq 1$; 2) G_p is a direct product of l cyclic subgroups, where $l \geq i_F(W) + 1$.

P r o o f. Suppose that one of the conditions 1), 2) is satisfied. Then an algebra $F^{\lambda}G_p$ is not semisimple for any $\lambda \in Z^2(G_p, W)$. In view of Lemma 1, the ring $S^{\lambda}G_p$ is of infinite representation type. Applying Proposition 3, we conclude that $S^{\mu}G$ is of infinite representation type for each $\mu \in Z^2(G_p, W)$. Hence, the groups G and G_p are of purely infinite projective (S, W)-representation type.

Let G_p be a direct product of r cyclic subgroups, where $r \leq i_F(W)$. Then there is a cocycle $\mu \in Z^2(G_p, W)$ such that $F^{\mu}G_p$ is a field. Let $K = F^{\mu}G_p$. We have $S^{\mu}G_p \cong K[[X]]$, and so every indecomposable $S^{\mu}G_p$ -module is isomorphic to $S^{\mu}G_p$. Since the ring $S^{\mu}G_p$ is of finite representation type, the group G_p is not of purely infinite projective (S, W)-representation type. \square

Proposition 9. Let S = F[[X]] and W be a subgroup of S^* .

- (i) The groups G and G_p are of bounded projective (S, W)-representation type if and only if p = 2 and $|G_2| = 2$.
- (ii) If the groups G and G_p are of unbounded projective (S, W)-representation type, then G and G_p are also of strongly unbounded projective (S, W)-representation type.

Proof. Apply Proposition 6.

Proposition 10. Let G be a finite group and S = F[[X]].

- (i) If $C_p = G'_p$ then the groups G and G_p are P(S, W) R-isotypic for any subgroup W of the group S^* .
- (ii) If $|G'_p| > 2$ then G and G_p are of purely strongly unbounded projective (S, S^*) -representation type.

Proof. (i) If $C_p = G'_p$ then, by Lemma 3, for every $\mu \in Z^2(G_p, W)$ there exists a cocycle $\lambda \in Z^2(G, W)$ such that the restriction of λ to $G_p \times G_p$ is equal to μ . In view of Propositions 3-5, the rings $S^{\lambda}G$ and $S^{\lambda}G_p$ are of the same representation type. Hence the groups G and G_p are P(S, W) R-isotypic.

(ii) If $|G'_p| > 2$ then $|C_p| > 2$. By Proposition 7, G and G_p are of purely strongly unbounded projective (S, S^*) -representation type.

Proposition 11. Assume that G is a finite group, $p \neq 2$, S = F[[X]] and W is a subgroup of F^* .

- (i) Let $|C_p| \neq 1$ and $|G'_p| = 1$. The groups G and G_p are P(S, W) R-isotypic if and only if G_p is a direct product of r cyclic subgroups, where $r \geq i_F(W) + 1$.
- (ii) Let G_p be a direct product of r cyclic subgroups, where $r \geq i_F(W) + 1$. Then G and G_p are of purely strongly unbounded projective (S, W)-representation type.
- P r o o f. (i) If $|C_p| \neq 1$ then $|C_p| > 2$. It follows, by Proposition 7, that G is of purely strongly unbounded projective (S, W)-representation type. In view of Theorem 1, the Abelian group G_p is of purely strongly unbounded projective (S, W)-representation type if and only if G_p is a direct product of r cyclic subgroups, where $r \geq i_F(W) + 1$.
 - (ii) Apply (i) and Proposition 5.

Proposition 12. Let p = 2, S = F[[X]], G be a finite group such that $|C_2| > 2$ and $|G'_2| = 1$. The groups G and G_2 are $P(S, F^*)$ R-isotypic if and only if one of the following conditions is satisfied:

(i) G_2 is a direct product of l cyclic subgroups, where $l \ge i_F(F^*) + 2$;

(ii) G_2 is a direct product of $i_F(F^*) + 1$ cyclic subgroups whose orders are not equal to 2.

Moreover, if one of the conditions (i), (ii) is satisfied, then G and G_2 are of purely strongly unbounded projective (S, F^*) -representation type.

Proof. If $|C_2| > 2$ then, by Proposition 7, the group G is of purely strongly unbounded projective (S, F^*) -representation type. By Theorem 2, the group G_2 is of purely strongly unbounded projective (S, F^*) -representation type if and only if one of the conditions (i), (ii) is satisfied.

References

- [1] I. Assem, D. Simson, A. Skowroński. Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge 2006.
- [2] A.F. Barannyk, P.M. Gudyvok. On the algebra of projective integral representations of finite groups. *Dopov. Akad. Nauk Ukr. RSR*, *Ser. A*, 291-293, 1972. (In Ukrainian).

- [3] L.F. Barannyk, D. Klein. Twisted group rings of strongly unbounded representation type. *Colloq. Math.* **100**, 265-287, 2004.
- [4] L.F. Barannyk, K. Sobolewska. On indecomposable projective representations of finite groups over fields of characteristic p > 0. Colloq. Math. 98, 171-187, 2003.
- [5] C.W. Curtis, I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience, New York 1962 (2nd ed., 1966).
- [6] C.W Curtis, I. Reiner. Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, New York 1981.
- [7] W. Gaschütz. Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen. *Math. Z.* **56**, 376-387, 1952.
- [8] P.M Gudyvok. On boundedness of degrees of indecomposable modular representations of finite groups over principal ideal rings. *Dopov. Akad. Nauk Ukr. RSR*, Ser. A, 683-685, 1971. (In Ukrainian).
- [9] G. Karpilovsky. *Group Representations*, Vol. 2. North-Holland Math. Stud. 177, North-Holland, Amsterdam 1993.