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Abstract
Let F be a field of characteristic p > 0, S = F [[X ]], S∗ the unit group of

S, and W a subgroup of S∗. We characterize finite groups depending on a pro-

jective (S,W )-representation type. We also give necessary and sufficient condi-

tions for a finite group and its Sylow p-subgroups to be of the same projective

(S,W )-representation type.

1. Introduction

Throughout this paper, we use the following notations: p ≥ 2 is a prime;
N is the set of all positive integers; F is a field of characteristic p > 0;
S = F [[X]] is the F -algebra of formal power series in the indeterminate X
with coefficients in F ; S∗ is the unit group of S; W is a subgroup of S∗;
Z2(G,W ) is the group of all W -valued normalized 2-cocycles of the group
G that acts trivially on W ; G is a finite group of order |G|; e is the identity
element of G; G′ is the commutant of G; Gp is a Sylow p-subgroup of G; Cp
is a Sylow p-subgroup of G′. We assume that Cp ⊂ Gp, hence G′

p ⊂ Cp.
Given a cocycle λ : G × G → S∗ in Z2(G,S∗), we denote by SλG the

twisted group ring of the group G over the ring S with the cocycle λ.
An S-basis {ug : g ∈ G} of SλG satisfying uaub = λa,buab for all a, b ∈ G
is called natural. If H is a subgroup of G, then the restriction of a cocycle
λ : G ×G → S∗ to H ×H will also be denoted by λ. In this case SλH is a
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subring of SλG. By an SλG-module we mean a finitely generated left SλG-
module which is S-free, that is, an SλG-lattice (see [6, p. 140]). We denote by
[M ] the isomorphism class of SλG-modules that contains an SλG-module
M . Moreover, by Indd(S

λG) we denote the set of all [V ], where V is an
indecomposable SλG-module of S-rank d.

If M is an SλG-module, then we denote by MH the module M viewed
as an SλH-module. If N is an SλH-module, then NG = SλG⊗SλH N is the
induced SλG-module.

If W is a subgroup of F ∗, then iF (W ) is the supremum of the set that
consists of 0 and all positive integers m such that an F -algebra of the form

F [X]/(Xp − α1) ⊗F . . .⊗F F [X]/(Xp − αm)

is a field for some α1, . . . , αm ∈W .
In this paper, we continue the characterization of finite groups depend-

ing on a projective representation types as begun in [3], [4].
In Section 2, we present a number of propositions about the representa-

tions types of twisted group rings which are based on the results of Gaschütz
[7] on relative projective and injective modules over group rings (see [5,
pp. 426-430], [6, pp. 449-453]). In Section 3, we single out finite groups of
every projective representation type in a sense of definitions in paper [3]
(see also Section 3). We prove that if G is a finite group and |Cp| > 2, then
G is of purely strongly unbounded projective (S, S∗)-representation type
(Proposition 7). Assume that p 6= 2 and W is a subgroup of F ∗. A group
G is of purely strongly unbounded projective (S,W )-representation type if
and only if |Cp| 6= 1 or Gp is a direct product of l cyclic subgroups, where
l ≥ iF (W ) + 1 (Theorem 1). We also establish that if p = 2 and |C2| 6= 2,
then G is of purely strongly unbounded projective (S,F ∗)-representation
type if and only if one of the following conditions holds: 1) |C2| > 2; 2) G2

is a direct product of l cyclic subgroups, where l ≥ iF (F ∗) + 2; 3) G2 is a
direct product of iF (F ∗) + 1 cyclic subgroups whose orders are not equal to
2 (Theorem 2).

In Section 4, we characterize a finite group G such that G and Gp are
of the same projective representation type over S = F [[X]]. If Cp = G′

p

or |G′
p| > 2, then the groups G and Gp are of the same projective (S,W )-

representation type for any subgroup W of the group S∗ (Proposition 10).
Let p 6= 2, W be a subgroup of F ∗, |Cp| 6= 1 and |G′

p| = 1. We prove that the
groups G and Gp are of the same projective (S,W )-representation type if and
only if Gp is a direct product of r cyclic subgroups, where r ≥ iF (W ) + 1
(Proposition 11). Let p = 2, G be a finite group such that |C2| > 2 and
|G′

2| = 1. We establish that the groups G and G2 are of the same projective
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(S,F ∗)-representation type if and only if one of the following conditions is
satisfied:

(i) G2 is a direct product of l cyclic subgroups, where l ≥ iF (F ∗) + 2;
(ii) G2 is a direct product of iF (F ∗) + 1 cyclic subgroups whose orders

are not equal to 2 (Proposition 12).
We remark that our investigations were considerably stimulated by the

well-known Brauer-Thrall conjectures for finite-dimensional algebras over an
arbitrary field (see [1, p. 138] for a formulation of the conjectures).

2. The representation types of twisted group rings

Proposition 1. Let G be a finite group, Gp a Sylow p-subgroup of G,
λ ∈ Z2(G,S∗) and M an SλG-module. Then M is isomorphic to an SλG-
component of (MGp)

G.

The proof of the Proposition 1 is similar to the proof of the analogous
proposition for KG-modules, where K is a field of characteristic p > 0 (see
[5, pp. 429-430]).

Proposition 2. Let G be a finite group, H a subgroup of G, λ ∈ Z2(G,S∗)
and W an SλH-module. Then W is isomorphic to an SλH-component of
(WG)H .

The proof of the Proposition 2 is the same as the proof of analogous
proposition for KG-modules, where K is a field of characteristic p > 0
(see [5, p. 430]).

We recall that SλG is of finite (resp. infinite) representation type if
the set of all isomorphism classes of indecomposable SλG-modules is finite
(resp. infinite). Let D(SλG) be the set of S-ranks of all indecomposable SλG-
modules. If D(SλG) is finite (resp. infinite), then SλG is of bounded (resp.
unbounded) representation type. We say that SλG is of SUR-type (Strongly
Unbounded Representation type) if there exists a function fλ : N → N such
that fλ(n) ≥ n and Indfλ(n)(S

λG) is an infinite set for every n > 1.

Proposition 3. Let G be a finite group and λ ∈ Z2(G,S∗). Then SλG is
of finite (resp. infinite) representation type if and only if SλGp is of finite
(resp. infinite) representation type.

P r o o f. Apply Propositions 1 and 2.

Proposition 4. Let G be a finite group and λ ∈ Z2(G,S∗). Then SλG is
of bounded (resp. unbounded) representation type if and only if SλGp is of
bounded (resp. unbounded) representation type.
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P r o o f. Apply Propositions 1 and 2.

Proposition 5. Let G be a finite group and λ ∈ Z2(G,S∗). Then SλG is
of SUR-type if and only if SλGp is of SUR-type

P r o o f. Assume that SλG is of SUR-type. Then there exists an infi-
nite subset T of the set N such that Indn(S

λG) is infinite for any n ∈ T .
Let [M ] ∈ Indn(S

λG). In view of Proposition 1, M is isomorphic to an
SλG-component of (MGp)

G. Hence there is an indecomposable SλGp-module
W such that WG ∼= M ⊕ V for some SλG-module V and n|G|−1 ≤ d ≤ n,
where d is the S-rank of W . It follows that there exists a natural number
dλ(n) such that

n|G|−1 ≤ dλ(n) ≤ n

and Inddλ(n)(S
λGp) is an infinite set for every n ∈ T . Consequently SλGp is

of SUR-type.
Conversely, let SλGp be of SUR-type. Suppose that Indn(S

λGp) is infi-
nite for any n ∈ Ω, where Ω is an infinite subset of N. Let [V ] ∈ Indn(S

λGp).
By Proposition 2, V is isomorphic to SλGp-component of (V G)Gp . It fol-
lows that there exists an indecomposable SλG-module M such that n ≤
dimM ≤ n · |G| and MGp

∼= V ⊕W for some SλGp-module W . The pre-
ceding arguments shows that there exists a function fλ : Ω → N such that
n ≤ fλ(n) ≤ n · |G| and Indfλ(n)(S

λG) is an infinite set for every n ∈ Ω.
Therefore SλG is of SUR-type.

�

Lemma 1 (see [3, pp. 277, 279]). Let Gp be a finite p-group, S = F [[X]]
and λ ∈ Z2(G,F ∗).

(i) If p 6= 2 and the algebra F λG is not semisimple, then the ring SλG
is of SUR-type.

(ii) If p = 2 and the algebra F λG is not semisimple, then the set
Indl(S

λG) is infinite for some l ≤ |G|.
Lemma 2 (see [3, p. 280]). Let Gp be a finite p-group, S = F [[X]] and
λ ∈ Z2(G,S∗). Assume that G contains a subgroup H such that |H| > 2
and the restriction of λ to H × H is a coboundary. Then SλG is of SUR-
type.

Let Gp be a finite p-group, W a subgroup of S∗, λ : Gp × Gp → W
a 2-cocycle. Denote by Ker(λ) the union of all cyclic subgroups 〈g〉 of Gp
such that the restriction of λ to 〈g〉×〈g〉 is a W -valued coboundary. The set
Ker(λ) is called the kernel of λ ∈ Z2(Gp,W ) (see [3, p. 269]). We recall that
G′
p ⊂ Ker(λ), Ker(λ) is a normal subgroup of Gp, and up to cohomology in

Z2(G,W ) λg,a = λa,g = 1 for all g ∈ G, a ∈ Ker(λ).
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Let G be a finite group, Gp a Sylow p-subgroup of G, Cp a Sylow
p-subgroup of G′ and Cp ⊂ Gp. Assume that λ ∈ Z2(G,W ) and µ is the
restriction of λ to Gp ×Gp. Then Cp ⊂ Ker(µ) [9, p. 42].

Suppose that G is a finite group and p | |G′|. The group G/G′ is a
direct product of its Sylow q-subgroups GqG′/G′, where Gq is a Sylow q-
subgroup of G and q is a prime divisor of |G : G′|. The group Gp/Cp is
isomorphic to the GpG′/G′. Assume that ϕ : G → G/G′ is the canonical
homomorphism, ψ : G/G′ → GpG

′/G′ is a projector and χ : GpG
′/G′ →

Gp/Cp is the isomorphism defined by χ(gG′) = gCp for every g ∈ Gp. Then

f := χψϕ (1)

is a homomorphism of G onto Gp/Cp. The restriction of f to Gp is the
canonical homomorphism of Gp onto Gp/Cp.

Lemma 3. Let f : G → H be the homomorphism (1), where H = Gp/Cp.
If W is a subgroup of S∗, µ ∈ Z2(H,W ) and

λa,b = µf(a),f(b)

for all a, b ∈ G, then λ : (a, b) 7→ λa,b belongs to Z2(G,W ) and λx,y = λy,x =
1 for all x ∈ Gp, y ∈ Cp. Moreover, if {ug : g ∈ G} is a natural S-basis of
SλCp = SCp, then the set

V =
∑

g∈Cp,g 6=e
SλGp(ug − ue)

is an ideal of the ring SλGp and SλGp/V ∼= SµH.

P r o o f. Direct calculation.

3. Projective representation types of finite groups

We recall from [2] that a projective (S,W )-representation of the group
G of degree n is a mapping Γ: G → GL(n, S) such that Γ(e) = E
and Γ(a)Γ(b) = λa,bΓ(ab), where λa,b ∈ W for all a, b ∈ G. It is easy
to see that λ : (a, b) 7→ λa,b belongs to Z2(G,W ). We also say that Γ
is a projective (S,W )-representation of G with cocycle λ. Two projective
(S,W )-representations Γ1 and Γ2 of G are called equivalent if there ex-
ists an invertible matrix C over S and elements αg ∈ W (g ∈ G) such
that C−1Γ1(g)C = αgΓ2(g) for every g ∈ G. If W = S∗, then Γ is called
a projective S-representation of G. If W = {1}, then Γ is called a lin-
ear S-representation of G. By analogy with indecomposable projective S-
representations of G (see [9, p. 108]), we can introduce the concept of an
indecomposable projective (S,W )-representation of the group G.
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Now we recall from [3] the concept of projective representation type
of finite group. A group G is said to be of finite projective (S,W )-
representation type if the number of (inequivalent) indecomposable pro-
jective (S,W )-representations of G with cocycle λ is finite for any
λ ∈ Z2(G,W ). Otherwise, G is of infinite projective (S,W )-representation
type. We say that G is of purely infinite projective (S,W )-representation
type, if the number of indecomposable projective (S,W )-representations of
G with cocycle λ is infinite for any λ ∈ Z2(G,W ). A group G is defined
to be of bounded projective (S,W )-representation type if the set of degrees
of all indecomposable projective (S,W )-representations of G with cocycle
λ is finite for every λ ∈ Z2(G,W ). Otherwise, G is said to be of un-
bounded projective (S,W )-representation type. We say that G is of purely
unbounded projective (S,W )-representation type if the set of degrees of all
indecomposable projective (S,W )-representations of G with cocycle λ is
infinite for each λ ∈ Z2(G,W ). A group G is of strongly unbounded pro-
jective (S,W )-representation type if for some cocycle λ ∈ Z2(G,W ) there
is a function fλ : N → N such that fλ(n) ≥ n and the number of inde-
composable projective (S,W )-representations of G with cocycle λ and of
degree fλ(n) is infinite for all n > 1. If there is such a function fλ for every
λ ∈ Z2(G,W ), then G is said to be of purely strongly unbounded projective
(S,W )-representation type.

Lemma 4 (see [3, p. 283]). Let S = F [[X]], W be a subgroup of F ∗, G
a finite p-group and G/G′ a direct product of r cyclic subgroups, where
r ≥ iF (W ) + 1 for p > 2 and r ≥ iF (W ) + 2 for p = 2. Then G is of
purely strongly unbounded projective (S,W )-representation type.

Lemma 5 (see [3, p. 283]). Let G be a finite Abelian p-group and
S = F [[X]].

(i) Assume that W ⊂ F ∗ and p 6= 2. Then G is of purely strongly
unbounded projective (S,W )-representation type if and only if G is a direct
product of l cyclic subgroups, where l ≥ iF (W ) + 1.

(ii) Let p = 2. Then G is of purely strongly unbounded projective
(S,F ∗)-representation type if and only if one of the following conditions is
satisfied: 1) G is a direct product of l cyclic subgroups, where l ≥ iF (F ∗)+2;
2) G is a direct product of iF (F ∗) + 1 cyclic subgroups whose orders are not
equal to 2.

Proposition 6. Let G be a finite group, p | |G|, S = F [[X]] and W a sub-
group of S∗.

(i) A group G is of bounded projective (S,W )-representation type if and
only if p = 2 and |G2| = 2.

(ii) A group G is of unbounded projective (S,W )-representation type if
and only if G is of strongly unbounded projective (S,W )-representation type.
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P r o o f. (i) If G is of bounded projective (S,W )-representation type, then
the group ring SG is of bounded representation type. It follows, by [8], that
p = 2 and |G2| = 2. Conversely, if p = 2 and |G2| = 2 then, by Proposi-
tion 6 from [3], the group G2 is of bounded projective (S,W )-representation
type. In view of Proposition 4, G also is of bounded projective (S,W )-
representation type.

(ii) If |Gp| > 2 then, by Theorem 1 from [3] and Proposition 5, the group
ring SG is of strongly unbounded representation type. �

Proposition 7. Let S = F [[X]] and G be a finite group such that |Cp| >
2. Then G is of purely strongly unbounded projective (S, S∗)-representation
type.

P r o o f. Let λ ∈ Z2(G,S∗) and µ be the restriction of λ to Gp ×Gp. Since
Cp ⊂ Ker(µ), SµCp is the group ring of Cp over S. By Lemma 2, the ring
SλGp is of SUR-type. It follows from this and Proposition 5 that SλG is of
SUR-type for any λ ∈ Z2(G,S∗). Hence, G is of purely strongly unbounded
projective (S, S∗)-representation type. �

Theorem 1. Let p 6= 2 and W be a subgroup of F ∗.
(i) A group G is of purely strongly unbounded projective

(S,W )-representation type if and only if |Cp| 6= 1 or Gp is a direct
product of l cyclic subgroups, where l ≥ iF (W ) + 1.

(ii) A group G is of purely strongly unbounded projective
(S,W )-representation type if and only if G is of purely unbounded
projective (S,W )-representation type.

P r o o f. (i) If |Cp| 6= 1 then, by Proposition 7, G is of purely strongly
unbounded projective (S,W )-representation type. Let |Cp| = 1. In view
of Lemma 3, for every cocycle µ ∈ Z2(Gp, S

∗) there exists a cocycle
λ ∈ Z2(G,S∗) such that the restriction of λ to Gp × Gp is equal to µ.
It follows from this and Proposition 5 that G is of purely strongly un-
bounded projective (S,W )-representation type if and only if Gp is of
purely strongly unbounded projective (S,W )-representation type. Applying
Lemma 5, we conclude that G is of purely strongly unbounded projective
(S,W )-representation type if and only if Gp is a direct product of l cyclic
subgroups, where l ≥ iF (W ) + 1.

(ii) Let |Cp| = 1 and Gp be a direct product of r cyclic subgroups, where
r ≤ iF (W ). Then there exists a cocycle µ ∈ Z2(Gp,W ) such that FµGp is a
field. Let K = FµGp. We have SµGp ∼= K[[X]]. It follows that the ring SµGp
is of finite representation type. By Lemma 3, there is a cocycle λ ∈ Z2(G,W )
such that the restriction of λ to Gp×Gp is equal to µ. In view of Proposition
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3, the ring SλG is of finite representation type. Hence, G is not of purely
unbounded projective (S,W )-representation type. �

Theorem 2. Let S = F [[X]], where F is a field of characteristic 2.

(i) Let W be a subgroup of F ∗ and G2/C2 a direct product of r cyclic
subgroup, where r ≥ iF (W ) + 2. Then G is of purely strongly unbounded
projective (S,W )-representation type.

(ii) Let |C2| 6= 2. A group G is of purely strongly unbounded projective
(S,F ∗)-representation type if and only if one of the following conditions is
satisfied: 1) |C2| > 2; 2) G2 is a direct product of l cyclic subgroups, where
l ≥ iF (F ∗) + 2; 3) G2 is a direct product of iF (F ∗) + 1 cyclic subgroups
whose orders are not equal to 2.

(iii) Let |C2| 6= 2. A group G is of purely strongly unbounded projective
(S,F ∗)-representation type if and only if G is of purely unbounded projective
(S,F ∗)-representation type.

P r o o f. (i) By Lemma 4, G2 is of purely strongly unbounded projective
(S,W )-representation type. It follows from this and Proposition 5 that G is
of purely strongly unbounded projective (S,W )-representation type.

(ii) If |C2| > 2 then, by Proposition 7, G is of purely strongly un-
bounded projective (S,F ∗)-representation type. Let |C2| = 1. In view of
Lemma 3 and Proposition 5, G is of purely strongly unbounded projective
(S,F ∗)-representation type if and only if G2 is of purely strongly unbounded
projective (S,F ∗)-representation type. Applying Lemma 5, we finish the
proof.

(iii) Assume that |C2| = 1. If G2 is a direct product of r cyclic subgroup,
where r ≤ iF (F ∗), then there exists a cocycle µ ∈ Z2(G2, F

∗) such that
FµG2 is a field. It follows that SµG2 is of finite representation type. By
Lemma 3, there is a cocycle λ ∈ Z2(G,F ∗) such that the restriction of λ to
G2 × G2 is equal to µ. In view of Proposition 3, the ring SλG is of finite
representation type.

Let G2 = H × 〈a〉, where |a| = 2 and H is a direct product of
iF (F ∗) cyclic subgroups. There exists a cocycle µ ∈ Z2(G2, F

∗) such that
FµG2 = FµH ⊗F F 〈a〉, where FµH is a field and F 〈a〉 is the group algebra
of 〈a〉 over F . Let K = FµH and R = K[[X]]. Then SµG2 is the group ring
R〈a〉. It follows, by Proposition 6, that SµG2 is of bounded representation
type. By Lemma 3, there is a cocycle λ ∈ Z2(G,F ∗) such that the restriction
of λ to G2×G2 is equal to µ. The ring SλG is of bounded representation type,
in view of Proposition 4. Hence, G is not of purely unbounded projective
(S,F ∗)-representation type. �
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4. Isotypic conditions for groups G and Gp

In this Section, we assume that G is a finite group, p | |G|, Gp is a Sylow
p-subgroup of G, Cp is a Sylow p-subgroup of G′ and Cp ⊂ Gp.

Two groups are said to be P(S,W )R-isotypic if they are of the same
projective (S,W )-representation type. From the above results, we will derive
necessary and sufficient conditions for G and Gp to be P(S,W )R-isotypic.

Proposition 8. Let S = F [[X]] and W be a subgroup of F ∗. The groups
G and Gp are of purely infinite projective (S,W )-representation type if and
only if one of the following conditions is satisfied: 1) |G′

p| 6= 1; 2) Gp is a
direct product of l cyclic subgroups, where l ≥ iF (W ) + 1.

P r o o f. Suppose that one of the conditions 1), 2) is satisfied. Then an
algebra F λGp is not semisimple for any λ ∈ Z2(Gp,W ). In view of Lemma
1, the ring SλGp is of infinite representation type. Applying Proposition
3, we conclude that SµG is of infinite representation type for each µ ∈
Z2(Gp,W ). Hence, the groups G and Gp are of purely infinite projective
(S,W )-representation type.

Let Gp be a direct product of r cyclic subgroups, where r ≤ iF (W ). Then
there is a cocycle µ ∈ Z2(Gp,W ) such that FµGp is a field. Let K = FµGp.
We have SµGp ∼= K[[X]], and so every indecomposable SµGp-module is iso-
morphic to SµGp. Since the ring SµGp is of finite representation type, the
group Gp is not of purely infinite projective (S,W )-representation type. �

Proposition 9. Let S = F [[X]] and W be a subgroup of S∗.
(i) The groups G and Gp are of bounded projective (S,W )-representation

type if and only if p = 2 and |G2| = 2.
(ii) If the groups G and Gp are of unbounded projective (S,W )-

representation type, then G and Gp are also of strongly unbounded projective
(S,W )-representation type.

P r o o f. Apply Proposition 6.

Proposition 10. Let G be a finite group and S = F [[X]].
(i) If Cp = G′

p then the groups G and Gp are P(S,W )R-isotypic for any
subgroup W of the group S∗.

(ii) If |G′
p| > 2 then G and Gp are of purely strongly unbounded projec-

tive (S, S∗)-representation type.

P r o o f. (i) If Cp = G′
p then, by Lemma 3, for every µ ∈ Z2(Gp,W ) there

exists a cocycle λ ∈ Z2(G,W ) such that the restriction of λ to Gp × Gp
is equal to µ. In view of Propositions 3-5, the rings SλG and SλGp are of
the same representation type. Hence the groups G and Gp are P(S,W )R-
isotypic.



72 Dariusz Klein

(ii) If |G′
p| > 2 then |Cp| > 2. By Proposition 7, G and Gp are of purely

strongly unbounded projective (S, S∗)-representation type. �

Proposition 11. Assume that G is a finite group, p 6= 2, S = F [[X]] and
W is a subgroup of F ∗.

(i) Let |Cp| 6= 1 and |G′
p| = 1. The groups G and Gp are P(S,W )R-

isotypic if and only if Gp is a direct product of r cyclic subgroups, where
r ≥ iF (W ) + 1.

(ii) Let Gp be a direct product of r cyclic subgroups, where
r ≥ iF (W ) + 1. Then G and Gp are of purely strongly unbounded projec-
tive (S,W )-representation type.

P r o o f. (i) If |Cp| 6= 1 then |Cp| > 2. It follows, by Proposition 7, that
G is of purely strongly unbounded projective (S,W )-representation type. In
view of Theorem 1, the Abelian group Gp is of purely strongly unbounded
projective (S,W )-representation type if and only if Gp is a direct product
of r cyclic subgroups, where r ≥ iF (W ) + 1.

(ii) Apply (i) and Proposition 5. �

Proposition 12. Let p = 2, S = F [[X]], G be a finite group such that
|C2| > 2 and |G′

2| = 1. The groups G and G2 are P(S,F ∗)R-isotypic if and
only if one of the following conditions is satisfied:

(i) G2 is a direct product of l cyclic subgroups, where l ≥ iF (F ∗) + 2;
(ii) G2 is a direct product of iF (F ∗) + 1 cyclic subgroups whose orders

are not equal to 2.
Moreover, if one of the conditions (i), (ii) is satisfied, then G and G2

are of purely strongly unbounded projective (S,F ∗)-representation type.

P r o o f. If |C2| > 2 then, by Proposition 7, the group G is of purely strongly
unbounded projective (S,F ∗)-representation type. By Theorem 2, the group
G2 is of purely strongly unbounded projective (S,F ∗)-representation type if
and only if one of the conditions (i), (ii) is satisfied. �
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