PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum Water Jets Inclination Angle for Better Tensile Strength in Hydroentanglement Process

Identyfikatory
Warianty tytułu
PL
Optymalny kąt nachylenia strumienia wody dla poprawy wytrzymałości włóknin spętlanych strumieniem wody
Języki publikacji
EN
Abstrakty
EN
An experimental set up was developed to evaluate the role of the water jet inclination angle during the hydroentanglement process. Hydroentangled bicomponent nonwoven fabrics were made using the inclined water jet apparatus designed. The effects of water jet inclination angles are discussed and evaluation was made on the basis of the fabric tensile strength. The experimental results revealed that the use of inclined water jets increases the fabric’s tensile strength. An inclination angle of 10 degrees was the optimum, showing higher tensile strength for all nonwoven fabrics tested. These results confirmed that with an optimum water jet inclination angle in the hydroentanglement process, the fabric’s tensile strength can be improved.
PL
Opracowano eksperymentalne stanowisko dla określenia znaczenia kąta nachylenia strumienia wody podczas otrzymywania włóknin. Wytwarzano dwuskładnikowe włókniny stosując strumienie wody o różnym nachyleniu. Przeanalizowano wpływ kąta strumienia i oceniono biorąc jako kryterium wytrzymałość włókniny. Stwierdzono, że kąt nachylenia strumieni wody równy 10 stopni był optymalny ponieważ przy takim kącie uzyskano największe wytrzymałości wszystkich wytwarzanych podczas testu włóknin.
Rocznik
Strony
82--86
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Textile Engineering, Dong Hua University, Shanghai, P. R. China
autor
  • Department of Nonwoven, Dong Hua University, Shanghai, P. R. China
autor
  • Department of Textile Engineering, Dong Hua University, Shanghai, P. R. China
autor
  • Department of Textile Engineering, Dong Hua University, Shanghai, P. R. China
Bibliografia
  • 1. Fechter Th. A., Münstermann U., Watzl A.; “Latest Developments in Hydroentanglement,” International Fibre Journal, February 2001, Vol. 16, No. 1, pp 50-51.
  • 2. Weng W.; “Hyper punch Technology for Artificial Leather and Paper maker Felts,” The 8th Shanghai International Conference Papers, Shanghai, P. R. China,22-23 Sept. 1999, pp 198-205.
  • 3. Turbak A. F.; “Nonwovens: Theory, Processing, Performance, and Testing,”Tappi Press, USA, 1993, pp 168-169.
  • 4. Medeiros F. J.; “Spunlace / Hydroentanglement Methods and Products,” International Non-woven Conference, Virginia, USA, 11-13 September 1996, INDA-TEC 1996, pp. 5.1-5.15.
  • 5. Barnard W. S., Osborne R. J., Dayton N. J.; “Spunlace Processes Worldwide,” The International Non-woven Technological Conference, Book of Papers, Marriott’s Hilton Head Resort Association of the Non-woven Fabric Industry, USA, 18-21 May 1987, INDA.TEC 87, pp. 501-512.
  • 6. Tafreshi H. V., Pourdeyhimi B., Holmes R., Shiffler D.; “Simulating and Characterizing Water Flos Inside Hydroentan- gling Orifices,” Textile Research Journal, 2003, Vol. 73, No. 3, pp. 256-262.
  • 7. Ghasemieh E., Versteeg H. K., Acar M.; “Effect of Nozzle Geometry on the Flow Characteristics of Hydroentangling Jets,” Textile Research Journal, 2003, Vol. 73, No. 5, pp. 444-450.
  • 8. Tafreshi H. V., Pourdeyhimi B.; “Simula- ting the Flow Dynamics in Hydroentangling Nozzles: Effect of Cone Angle and Nozzle Aspect Ratio,” Textile research Journal, 2003, Vol. 73, No. 8, pp. 700-704.
  • 9. Begenir A., Tafreshi H. V., Pourdeyhimi B.; “Effect of Nozzle Geometry on Hydroentangling Water Jets: Experimental Observations,” Textile Research Journal, 2004, Vol. 74, No. 2, pp. 178-184
  • 10. Tafreshi H. V., Pourdeyhimi B.; “Simulating Cavitation and Hydraulic Flip Inside Hydroentangling Nozzles,” Textile Research Journal, 2004, Vol. 74, No.4, pp 359-364
  • 11. Anantharamaiah N., Tafreshi H. V., Poudeyhimi B.; “A study on flow through hydroentangling nozzles and their degradation,” Chemical Engineering Science, 2006, Vol. 61, pp. 4582-4594.
  • 12. Begnir A.; “The Role of Orifice Design in Hydroentanglement,” Master of Science Thesis, NCSU, 2002.
  • 13. Hwo C. C., Shiffler D. A.; “Non-woven forum PTT (staple) Fibres,” Corterra Polymer, Copyright Shell, 2000, (http:// www.shellchemicals.com/chemicals/pdf/corterra/0053.pdf), viewed at October 11, 2006
  • 14. Berkalp O. B., Pourdeyimi B., Seyami A.; “Texture Evolution in Hydroentangled Nonwovens,” International Nonwoven Journal, 2003, Vol. 12, No. 1, pp. 28-35.
  • 15. Zheng H.; “The impact of input Energy, Fibre Properties, and Forming Wires on the Performance of Hydroentangled Fabrics,” Ph.D. Thesis, NCSU, 2003.
  • 16. Timble N. B., Gilmore T. F., Morton G. P.;“Spunlace Fabric Performance of Unbleached Cotton at Different Specific Energy Levels of water,” International Non-woven Conference, Hyatt Regency Crystal City, Virginia, USA, 11-13 September 1996, INDA-TEC 1996.
  • 17. Pourmohammadi A., Russell S. J., Höffele S.; “Effect of Water Jet Profile and Initial Web Geometry on the Physical Properties of Composite Hydroentangled Fabrics,” Textile Research Journal, 2003, Vol. 73, No. 6, pp. 503-508.
  • 18. U.S Pat. 4,967,456, 1990-11-06.
  • 19. U.S Patent 5,791,028, 1998-08-11.
  • 20. U.S Patent 6,253,429B, 1998.
  • 21. Australian Patent 287,821 September, 1964.
  • 22. Webster D. R., Longmire E. K.; Vortex Dynamics in Jets from Inclined Nozzles, Phys. Fluids, 9(3), March 1997, pp. 655-666
  • 23. J. M. Oathout, P. O. Staples, D. F. Miller, Process and Apparatus for Increasing the Isotropy in Nonwoven Fabrics., US. Patent 6,877,196, 2005-12-04.
  • 24. ASTM Standard D 5035-1995, Standard Test Method for Breaking Force and Elongation of Textile Fabrics (strip method), Annual Book of Standards, Vol. 7, ASTM International, West Conshohocken, PA, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9eb2b162-51a5-4951-a283-762dea5c290f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.