Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
autor
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
autor
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, 2052, NSW, Australia
autor
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, 2052, NSW, Australia
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959, Rzeszów, Poland
Bibliografia
- 1. Appelö D., Colonius T. (2009), A high-order supergrid-scale absorbing layer and its application to linear hyperbolic systems, Journal of Computational Physics, 228, 11, 4200-4217.
- 2. Arcondoulis E. J. G., Doolan C. J., Zander A. C., Brooks L. A. (2013), An experimental investigation of airfoil tonal noise, Proceedings of Acoustics, Victor Harbor, Australia.
- 3. Bayliss A., Turkel E. (1982), Far-field boundary conditions for compressible flows, Journal of Computational Physics, 48, 182-199.
- 4. Bogey C., Bailly C. (2002), Three-dimensional nonreflective boundary conditions for acoustic simulations: far field formulation and validation test cases, ACTA Acustica United with Acustica, 88, 463-471.
- 5. Brentner K. S. (1987), Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation, NASA-TM-87721.
- 6. Christopher K. W. T. (1998), Advances in numerical boundary conditions for computational aeroacoustics, Journal of Computational Acoustics, 6, 4, 377-402.
- 7. Collis S., Lele S. (1996), A computational approach to swept leading-edge receptivity, Aerospace Sciences Meeting & Exhibit, Reno, NV.
- 8. Colonius T. I. M., Lele S. K., Moin P. (1993), Boundary conditions for direct computation of aerodynamic sound generation, AIAA Journal, 31, 9, 1574-1582.
- 9. Colonius T., Ran H. (2002), A Super-Grid-Scale Model for Simulating Compressible Flow on Unbounded Domains, Journal of Computational Physics, 182, 1, 191-212.
- 10. Curle N. (1955), The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231, 1187, 505-514.
- 11. Dong S., Karniadakis G. E., Ekmekci A., Rockwell D. (2006), A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake, Journal of Fluid Mechanics, 569, 185-207.
- 12. Farassat F. (1981), Linear acoustic formulas for calculation of rotating blade noise, AIAA Journal, 19, 9, 1122-1130.
- 13. Fosso P. A., Deniau H., Lamarque N., Poinsot T. (2012), Comparison of outflow boundary conditions for subsonic aeroacoustic simulations, International Journal for Numerical Methods in Fluids, 68, 10, 1207-1233.
- 14. Gennaro M. D., Kuhnelt H., Zanon A. (2017), Numerical prediction of the tonal airborne noise for a NACA0012 aerofoil at Moderate Reynolds number using a transitional URANS approach, Archives of Acoustics, 42, 4, 653-675.
- 15. Germano M., Piomelli U., Moin P., Cabot W. H. (1991), A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, 3, 7, 1760-1765.
- 16. Gill J., Fattah R., Zhang X. (2017), Towards an effective non-reflective boundary condition for computational aeroacoustics, Journal of Sound and Vibration, 392, 217-231.
- 17. Granet V., Vermorel O., Léonard T., Gicquel L., Poinsot T. (2010), Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids, AIAA Journal, 48, 10, 2348-2364.
- 18. Hayder M. E., Turkel E. (1995), Nonreflecting boundary conditions for jet flow computations, AIAA Journal, 33, 12, 2264-2270.
- 19. Hixon R., Shih S.-H., Mankabadi R. R. (1995), Evaluation of boundary conditions for computational aeroacoustics, AIAA Journal, 33, 11, 2006-2012.
- 20. Howe M. S. (1998), Acoustics of Fluid-Structure Interactions, Cambridge University Press. Cambridge.
- 21. Huet M. (2015), One-dimensional characteristic boundary conditions using nonlinear invariants, Journal of Computational Physics, 283, 312-328.
- 22. Inoue O., Hatakeyama N. (2002), Sound generation by a two-dimensional circular cylinder in a uniform flow, Journal of Fluid Mechanics, 471, 285-314.
- 23. Koupper C., Poinsot T., Gicquel L., Duchaine F. (2014), Compatibility of characteristic boundary conditions with radial equilibrium in turbomachinery simulations, AIAA Journal, 52, 12, 2829-2839.
- 24. Kravchenko A. G., Moin P. (2000), Numerical studies of flow over a circular cylinder at ReD = 3900, Physics of Fluids, 12, 2, 403-417.
- 25. Leer B. V. (1979), Towards the ultimate conservative difference scheme.V .A second-order sequel to Godunov’s method, Journal of Computational Physics, 32, 1, 101-136.
- 26. Lighthill M. J. (1952), On Sound Generated Aerodynamically I.General Theory, Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences, 211, 1107, 564-587.
- 27. Lighthill M. J., F. R. S. (1954), On Sound Generated Aerodynamically II. Turbulence as a Source of Sound, Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences, 222, 1148, 1-32.
- 28. Liu Q., Vasilyev O. V. (2010), Nonreflecting boundary conditions based on nonlinear multidimensional characteristics, International Journal for Numerical Methods in Fluids, 62, 1, 24-55.
- 29. Lodato G., Domingo P., Vervisch L. (2008), Three-dimensional boundary conditions for direct and largeeddy simulation of compressible viscous flows, Journal of Computational Physics, 227, 10, 5105-5143.
- 30. Mimani A., Prime Z., Doolan C. J., Medwell P. R. (2015), A sponge-layer damping technique for aeroacoustic Time-Reversal, Journal of Sound and Vibration, 342, 1244-151.
- 31. Motheau E., Almgren A., Bell J. B. (2017), Navier-Stokes Characteristic Boundary Conditions Using Ghost Cells, AIAA Journal, 55, 10, 3399-3408.
- 32. Ong L., Wallace J. (1996), The velocity field of the turbulent very near wake of a circular cylinder, Experiments in Fluids, 20, 441-453.
- 33. Parnaudeau P., Carlier J., Heitz D., Lamballais E. (2008), Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Physics of Fluids, 20, 8, 85-101.
- 34. Pirozzoli S., Colonius T. (2013), Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations, Journal of Computational Physics, 248, 109-126.
- 35. Poinsot T. J., Lele S. K. (1992), Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, 101, 1, 104-129.
- 36. Richards S. K., Zhang X., Chen X. X., Nelson P. A. (2004), The evaluation of non-reflecting boundary conditions for duct acoustic computation, Journal of Sound and Vibration, 270, 3, 539-557.
- 37. Reo P. L. (1986), Characteristic-based schemes for the Euler equations, Annual Review of Fluid Mechanics, 18, 1, 337-365.
- 38. Sandberg R. D., Sandham N. D. (2006), Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound, AIAA Journal, 44, 2, 402-405.
- 39. Tam C. K. W., Webb J. C. (1993), Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107, 262-281.
- 40. Tam C. K. W., Dong Z. (1994), Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics, Theoretical and Computational Fluid Dynamics, 6, 5-6, 303-322.
- 41. Thompson K. W. (1987), Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, 68, 1, 1-24.
- 42. Thompson K. W. (1990), Time dependent boundary conditions for hyperbolic systems, II, Journal of Computational Physics, 89, 2, 439-461.
- 43. Williams J. E. F., Hawkings D. L. (1969), Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 264, 1151, 321-342.
- 44. Yoo C. S., Im H. G. (2007), Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling, 11, 2, 259-286.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9eacf56f-c17d-406c-b73c-765a0b8dd2d0