PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advancements in targeted cancer therapy. Role of nanotechnology in enhancing drug delivery systems

Identyfikatory
Warianty tytułu
PL
Postępy w ukierunkowanej terapii przeciwnowotworowej. Rola nanotechnologii w ulepszaniu systemów dostarczania leków
Języki publikacji
EN
Abstrakty
EN
Cancer, characterized by abnormal cell proliferation, continues to pose a significant challenge for researchers. Current methodologies do not ensure complete remission, frequently resulting in toxicity and suboptimal outcomes. Drug delivery systems (DDS) present a promising avenue for targeted therapy, with the goal of enhancing efficacy while minimizing side effects. Nanotechnology, especially through the utilization of nanoparticle-based drugs, is emerging as a pivotal strategy in oncology, enabling precise delivery of drugs to tumour sites. This review examines the landscape of contemporary anticancer drug delivery systems, emphasizing the crucial role of nanocarriers in enhancing therapeutic efficacy.
PL
Rak, charakteryzujący się nieprawidłową proliferacją komórek, w dalszym ciągu stanowi istotne wyzwanie dla badaczy. Obecne metodologie nie zapewniają całkowitej remisji, co często skutkuje toksycznością i suboptymalnymi wynikami leczenia. Systemy dostarczania leków (DDS) stanowią obiecującą drogę terapii celowanej, której celem jest zwiększenie skuteczności przy jednoczesnej minimalizacji skutków ubocznych. Nanotechnologia, zwłaszcza poprzez wykorzystanie leków na bazie nanocząstek, staje się kluczową strategią w onkologii, umożliwiającą precyzyjne dostarczanie leków do miejsc guza. W tym przeglądzie zbadano krajobraz współczesnych systemów dostarczania leków przeciwnowotworowych, podkreślając kluczową rolę nanonośników w zwiększaniu skuteczności terapeutycznej.
Rocznik
Strony
18--25
Opis fizyczny
Bibliogr. 75 poz., fig., tab.
Twórcy
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
  • Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, Cracow, Poland
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
  • AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Deepartment of Biocybernetics and Biomedical Engineering, Cracow , Poland
Bibliografia
  • [1] Diori Karidio I., Sanlier S.H.: Reviewing cancer’s biology: an eclec tic approach. J. Egypt. Natl. Cancer Inst. 1 (33) (2021) 32, doi: 10.1186/s43046-021-00088-y.
  • [2] Hainaut P., Plymoth A.: Cancer as a metabolic disease. Curr. Opin. Oncol. 1 (24) (2012) 56–57, 2012, doi: 10.1097/cco.0b013e 32834e388a.
  • [3] Anand P. et al.: Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 9 (25) (2008) 2097–2116, doi: 10.1007/s11095-008-9661-9.
  • [4] Hsu C.Y. et al.: An overview of nanoparticles in drug delivery: Properties and applications. South Afr. J. Chem. Eng. (46) (2023) 233–270, doi: 10.1016/j.sajce.2023.08.009.
  • [5] Cho K., Wang X., Nie S., Chen Z., Shin D.M.: Therapeutic nanopar ticles for drug delivery in cancer. Clin. Cancer Res. 5 (14) (2008) 1310–1316, doi: 10.1158/1078-0432.CCR-07-1441.
  • [6] Hirschey M.D. et al.: Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. (35) (2015) S129–S150, doi: 10.1016/j.semcancer.2015.10.002.
  • [7] Krump N.A., You J.: Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol. 11 (16) (2018) 684–698, doi: 10.1038/s41579-018-0064-6.
  • [8] El-Say K.M., El-Sawy H.S.: Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 1–2 (528) (2017) 675 691, doi: 10.1016/j.ijpharm.2017.06.052.
  • [9] Haley B., Frenkel E.: Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. Semin. Orig. Investig. 1 (26) (2008) 57–64, doi: 10.1016/J.UROLONC.2007.03.015.
  • [10] Cerqueira B.B.S., Lasham A., Shelling A.N., Al-Kassas R.: Nano particle therapeutics: Technologies and methods for overco ming cancer. Eur. J. Pharm. Biopharm. (97) (2015) 140–151, doi: 10.1016/j.ejpb.2015.10.007.
  • [11] Sharma P. et al.: Emerging trends in the novel drug delivery appro aches for the treatment of lung cancer. Chem. Biol. Interact. (309) (2019) 108720, doi: 10.1016/J.CBI.2019.06.033.
  • [12] Amreddy N. et al.: Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomed. Nanotechnol. Biol. Med. 2 (14) (2018) 373–384, doi: 10.1016/J.NANO.2017.11.010.
  • [13] Vanza J.D., Patel R.B., Patel M.R.: Nanocarrier centered thera peutic approaches: Recent developments with insight towards the future in the management of lung cancer. J. Drug Deliv. Sci. Technol. (60) (2020), doi: 10.1016/J.JDDST.2020.102070.
  • [14] Ranade V.V., Cannon J.B.: Drug delivery systems, 3rd ed. CRC Press (2011), doi: 10.1201/b10846.
  • [15] Nevozhay D., Kańska U., Budzyńska R., Boratyński J.: Współ czesny stan badań nad koniugatami i innymi systemami dostar czania leków w leczeniu schorzeń nowotworowych i innych jednostek chorobowych. Postepy Hig. Med. Dosw. 61 (2007) 350–360.
  • [16] Robinson D.H., Mauger J.W.: Drug delivery systems. Am. J. Health. Syst. Pharm. 10_suppl (48) (1991) S14–S23, doi: 10.1093/ ajhp/48.10_Suppl_1.S14.
  • [17] De R., Mahata M.K., Kim K.: Structure‐based varieties of poly meric nanocarriers and influences of their physicochemical pro perties on drug delivery profiles. Adv. Sci. 10 (9) (2022) 2105373, doi: 10.1002/advs.202105373.
  • [18] Mohan L.J., McDonald L., Daly J.S., Ramtoola Z.: Optimising PLGA-PEG nanoparticle size and distribution for enhanced drug targeting to the inflamed intestinal barrier. Pharmaceutics 11 (12) (2020) 1114, doi: 10.3390/pharmaceutics12111114.
  • [19] Manju S., Sreenivasan K.: Functionalised nanoparticles for targe ted drug delivery. In Biointegration of medical implant materials. Elsevier (2010) 267–297, doi: 10.1533/9781845699802.2.267.
  • [20] Ghezzi M. et al.: Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Controlled Release (332) (2021) 312–336, doi: 10.1016/j.jconrel.2021.02.031.
  • [21] Wang Q., Atluri K., Tiwari A.K., Babu R.J.: Exploring the applica tion of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals 3 (16) (2023) 433, doi: 10.3390/ph16030433.
  • [22] Eras A., Castillo D., Suárez M., Vispo N.S., Albericio F., Rodriguez H.: Chemical conjugation in drug delivery systems. Front. Chem. (10) (2022) 889083, doi: 10.3389/fchem.2022.889083.
  • [23] Du Y., Chen B.: Combination of drugs and carriers in drug delivery technology and its development. Drug Des. Devel. Ther. (13) (2019) 1401–1408, doi: 10.2147/DDDT.S198056.
  • [24] Madaan K., Kumar S., Poonia N., Lather V., Pandita D.: Dendri mers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 3 (6) (2014) 139, doi: 10.4103/0975-7406.130965.
  • [25] Mukherjee S., Mukherjee S., Abourehab M.A.S., Sahebkar A., Kesharwani P.: Exploring dendrimer-based drug delivery sys tems and their potential applications in cancer immunothe rapy. Eur. Polym. J. (177) (2022) 111471, doi: 10.1016/j.eurpo lymj.2022.111471.
  • [26] Aguilera-Correa J.J., Esteban J., Vallet-Regí M.: Inorganic and polymeric nanoparticles for human viral and bacterial infections prevention and treatment. Nanomaterials 1 (11) (2021) 137, doi: 10.3390/nano11010137.
  • [27] Moreno-Vega A.-I., Gómez-Quintero T., Nuñez-Anita R.-E., Acosta-Torres L.-S., Castaño V.: Polymeric and ceramic nanopar ticles in biomedical applications. J. Nanotechnol. (2012) (2012) 1–10, doi: 10.1155/2012/936041.
  • [28] Lu C.: Polymer-ceramic hybrid nanoparticles: promising strate gies for controlled drug release. Ceram.-Silik. (2024) 42–57, doi: 10.13168/cs.2024.0004.
  • [29] Karewicz A.: Polymeric and liposomal nanocarriers for controlled drug delivery. In Biomaterials for bone regeneration. Elsevier (2014) 351–373, doi: 10.1533/9780857098104.3.351.
  • [30] Haider M., Zaki K.Z., El Hamshary M.R., Hussain Z., Orive G., Ibrahim H.O.: Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J. Adv. Res. (39) (2022) 237–255, doi: 10.1016/j.jare.2021.11.008.
  • [31] Dastidar D.G., Ghosh D., Das A.: Recent developments in nano carriers for cancer chemotherapy. OpenNano (8) (2022) 100080, doi: 10.1016/j.onano.2022.100080.
  • [32] Del Mercato L.L. et al.: Biological applications of LbL multilayer capsules: From drug delivery to sensing. Adv. Colloid Interface Sci. 1 (207) (2014) 139–154, doi: 10.1016/J.CIS.2014.02.014.
  • [33] Lukong K.E.: Understanding breast cancer – The long and winding road. BBA Clin. (7) (2017) 64–77, doi: 10.1016/J.BBAC LI.2017.01.001.
  • [34] Abdelhamid H.N.: Characterization and modeling of drug release encapsulation materials. In Reference module in materials science and materials engineering. Elsevier (2023) B9780323960205001989, doi: 10.1016/B978-0-323-96020 5.00198-9.
  • [35] Vieira D.B., Gamarra L.F.: Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein São Paulo 1 (14) (2016) 99–103, doi: 10.1590/S1679-45082016RB3475.
  • [36] Bhaw-Luximon A., Goonoo N., Jhurry D.: Nanotherapeutics pro mises for colorectal cancer and pancreatic ductal adenocarci noma. In Nanobiomaterials in cancer therapy. Elsevier (2016) 147–201, doi: 10.1016/B978-0-323-42863-7.00006-2.
  • [37] Niemirowicz K., Car H.: Nanonośniki jako nowoczesne transpor tery w kontrolowanym dostarczaniu leków. Chemik 8 (66) (2012) 868–881.
  • [38] Kruk T., Chojnacka-Górka K., Kolasińska-Sojka M., Zapotoczny S.: Stimuli-responsive polyelectrolyte multilayer films and micro capsules. Adv. Colloid Interface Sci. (310) (2022), doi: 10.1016/j. cis.2022.102773.
  • [39] Ilyas S. et al.: Weak polyelectrolyte multilayers as tunable mem branes for solvent resistant nanofiltration. J. Membr. Sci. (514) (2016) 322–331, doi: 10.1016/j.memsci.2016.04.073.
  • [40] Heuberger R., Sukhorukov G., Vörös J., Textor M., Möhwald H.: Biofunctional polyelectrolyte multilayers and microcapsules: Control of non-specific and bio-specific pro tein adsorption. Adv. Funct. Mater. 3 (15) (2005) 357–366, doi: 10.1002/ADFM.200400063.
  • [41] Yurgel V., Collares T., Seixas F.: Developments in the use of nanocapsules in oncology. Braz. J. Med. Biol. Res. 6 (46) (2013) 486–501, doi: 10.1590/1414-431X20132643.
  • [42] Veerabadran N.G., Goli P.L., Stewart-Clark S.S., Lvov Y.M., Mills D.K.: Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol. Biosci. 7 (7) (2007) 877–882, doi: 10.1002/MABI.200700061. A 24 24 3/2024 3/2024
  • [43] Zahr A.S., De Villiers M., Pishko M.V.: Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 1 (21) (2005) 403–410, doi: 10.1021/LA0478595.
  • [44] Loh K. J., Kim J., Lynch J.P., Kam N.W.S., Kotov N.A.: Multifunctio nal layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 2 (16) (2007) 429–438, doi: 10.1088/0964-1726/16/2/022.
  • [45] Kaźmierczak Z. et al.: Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg. Med. Chem. 18 (28) (2020), doi: 10.1016/J.BMC.2020.115556.
  • [46] Sahay G., Alakhova D.Y., Kabanov A.V.: Endocytosis of nano medicines. J. Controlled Release 3 (145) (2010) 182–195, doi: 10.1016/J.JCONREL.2010.01.036.
  • [47] Karkar B., Patır İ., Şahin S.: Development of galangin-loaded nano-sized polyelectrolyte liposome: optimization and charac terization. Polym. Bull. 4 (81) (2024) 2847–2867, doi: 10.1007/ s00289-023-04826-1.
  • [48] Jain S., Kumar D., Swarnakar N.K., Thanki K.: Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 28 (33) (2012) 6758–6768, doi: 10.1016/j.biomate rials.2012.05.026.
  • [49] Lai W.-F., Wong W.-T., Rogach A.L.: Molecular design of layer-by--layer functionalized liposomes for oral drug delivery. ACS Appl. Mater. Interfaces 39 (12) (2020) 43341–43351, doi: 10.1021/ acsami.0c13504.
  • [50] Cooper G.M.: The cell: a molecular approach, 2. ed. Washington, DC: ASM Press [u.a.] (2000).
  • [51] Watson H.: Biological membranes. Essays Biochem. (59) (2015) 43–69, doi: 10.1042/bse0590043.
  • [52] Stillwell W.: An introduction to biological membranes: composi tion, structure and function, 2nd ed. London: Academic press, an imprint of Elsevier (2016).
  • [53] Solís-Calero C., Ortega-Castro J., Frau J., Muñoz F.: Nonenzymatic reactions above phospholipid surfaces of biological membranes: Reactivity of phospholipids and their oxidation derivatives. Oxid. Med. Cell. Longev. (2015) 319505, doi: 10.1155/2015/319505.
  • [54] Chakrabarti A.: Phospholipid asymmetry in biological membra nes: Is the role of phosphatidylethanolamine underappreciated? J. Membr. Biol. 2 (254) (2021) 127–132, doi: 10.1007/s00232 020-00163-w.
  • [55] Othman A.K., El Kurdi R., Badran A., Mesmar J., Baydoun E., Patra D.: Liposome-based nanocapsules for the controlled rele ase of dietary curcumin: PDDA and silica nanoparticle-coated DMPC liposomes enhance the fluorescence efficiency and anti cancer activity of curcumin. RSC Adv. 18 (12) (2022) 11282 11292, doi: 10.1039/D2RA00071G.
  • [56] De Gier J., Mandersloot J.G., Van Deenen L.L.M.: Lipid compo sition and permeability of liposomes. Biochim. Biophys. Acta BBA – Biomembr. 4 (150) (1968) 666–675, doi: 10.1016/0005 2736(68)90056-4.
  • [57] Bozzuto G., Molinari A.: Liposomes as nanomedical devices. Int. J. Nanomedicine (2015) 975, doi: 10.2147/IJN.S68861.
  • [58] Rochín-Wong S., Vélaz Rivas I.: Lipid and polymeric nanocap sules. In Drug carriers, Villarreal-Gómez L.J. (ed.). IntechOpen (2022), doi: 10.5772/intechopen.103906.
  • [59] Sharifi M. et al.: An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 12 (14) (2022), doi: 10.3390/cancers14122868.
  • [60] Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K.: Employment of enhanced permeability and reten tion effect (EPR): Nanoparticle-based precision tools for targe ting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C (98) (2019) 1252–1276, doi: 10.1016/j.msec.2019.01.066.
  • [61] Cuomo F., Ceglie A., Piludu M., Miguel M.G., Lindman B., Lopez F.: Loading and protection of hydrophilic molecules into liposo me-templated polyelectrolyte nanocapsules. Langmuir 27 (30) (2014) 7993–7999, doi: 10.1021/la501978u.
  • [62] Łukasiewicz S., Szczepanowicz K.: In vitro interaction of polyelec trolyte nanocapsules with model cells. Langmuir 4 (30) (2014) 1100–1107, doi: 10.1021/la403610y.
  • [63] Cuomo F., Lopez F., Miguel M.G., Lindman B.: Vesicle-templated layer-by-layer assembly for the production of nanocapsules. Langmuir 13 (26) (2010) 10555–10560, doi: 10.1021/la100584b.
  • [64] Abdelmoneem M.A. et al.: Dual-targeted lactoferrin shell-oily core nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 30 (11) (2019) 26731–26744, doi: 10.1021/acsami.9b10164.
  • [65] Gandek T.B., Van Der Koog L., Nagelkerke A.: A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv. Healthc. Mater. 25 (12) (2023) 2300319, doi: 10.1002/adhm.202300319.
  • [66] Ruano M. et al.: Fabrication of robust capsules by sequential assembly of polyelectrolytes onto charged liposomes. Langmuir 20 (37) (2021) 6189–6200, doi: 10.1021/acs.langmuir.1c00341.
  • [67] Nguyen S., Alund S.J., Hiorth M., Kjøniksen A.-L., Smistad G.: Studies on pectin coating of liposomes for drug delivery. Collo ids Surf. B Biointerfaces 2 (88) (2011) 664–673, doi: 10.1016/j. colsurfb.2011.07.058.
  • [68] Wang T., Wang N., Wang T., Sun W., Li T.: Preparation of sub micron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chem. Phys. Lipids 2 (164) (2011) 151–157, doi: 10.1016/j.chemphyslip.2010.12.005.
  • [69] Maja L., Željko K., Mateja P.: Sustainable technologies for lipo some preparation. J. Supercrit. Fluids (165) (2020) 104984, doi: 10.1016/j.supflu.2020.104984.
  • [70] Wang S., Chen Y., Guo J., Q. Huang: Liposomes for tumor tar geted therapy: A review. Int. J. Mol. Sci. 3 (24) (2023) 2643, doi: 10.3390/ijms24032643.
  • [71] Boban Z., Mardešić I., Subczynski W.K., Raguz M.: Giant unila mellar vesicle electroformation: What to use, what to avoid, and how to quantify the results. Membranes 11 (11) (2021) 860, doi: 10.3390/membranes11110860.
  • [72] Wang T., Wang N., Jin X., Zhang K., Li T.: A novel procedure for preparation of submicron liposomes-lyophilization of oil-in--water emulsions. J. Liposome Res. 3 (19) (2009) 231–240, doi: 10.1080/08982100902788390.
  • [73] Wang T., Deng Y., Geng Y., Gao Z., Zou J., Wang Z.: Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim. Biophys. Acta BBA – Biomembr. 2 (1758) (2006) 222–231, doi: 10.1016/j.bbamem.2006.01.023.
  • [74] Vogelaar A., Marcotte S., Cheng J., Oluoch B., Zaro J.: Use of microfluidics to prepare lipid-based nanocarriers. Pharmaceu tics 4 (15) (2023) 1053, doi: 10.3390/pharmaceutics15041053.
  • [75] Lin C.-M., Li C.-S., Sheng Y.-J., Wu D.T., Tsao H.-K.: Size-depen dent properties of small unilamellar vesicles formed by model lipids. Langmuir 1 (28) (2012) 689–700, doi: 10.1021/la203755v.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e9e48b3-df8c-4f81-a280-b622e6bc81ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.