Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Catalytic properties of activated carbons oxidized, treated with N-compounds, and promoted withcopper were studied in selective catalytic reduction NOXby ammonia (NH3-SCR). The modificationof the catalysts consisted of a series of steps (pre-oxidation of activated carbon, impregnation with urea,impregnation with copper). The physicochemical properties of the obtained samples were determinedusing X-ray diffraction, FT-IR spectroscopy, and low-temperature N2sorption. The modification withcopper improved the catalytic activity and stability of the catalysts. All the functionalized carbon dopedwith copper reached more than 90% of NO conversion and CO2did not exceed 240 ppm at 220◦C.The sample doped with 5 wt.% Cu had the maximum NO conversion of 98% at 300◦C. The maximum N2O concentration detected for the same sample was only 55 ppm, which confirmed its selectivity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
59–--67
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels,al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Al-Qodah Z., Shawabkah R., 2009. Production and characterization of granular activated carbon from activated sludge. Braz. J. Chem. Eng., 127–136. DOI: 10.1590/S0104-66322009000100012.
- 2. Allwar A., Hartati R., Fatimah I., 2017. Effect of nitric acid treatment on activated carbon derived from oil palm shell. In AIP Conference Proceedings, 1823, 020129. DOI: 10.1063/1.4978202.
- 3. Amanpour J., Salari D., Niaei A., Mousavi S., Panahi P., 2013. Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology. J. Environ. Sci. Health., Part A, 48, 879–886. DOI: 10.1080/10934529.2013.761490.
- 4. Bansal R.C., Goyal M., 2005. Activated Carbon Adsorption. Taylor & Francis Group Publishers. DOI: 10.1201/9781420028812.
- 5. Chuang K., Shuliu Z., Yenwey M., 2010. Catalytic activity of copper-supported catalyst for NO reduction in the presence of oxygen. Mater. Sci. Eng., B, 175, 100–107. DOI: 10.1016/j.mseb.2010.07.011.
- 6. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, OJ, L 334, 17.12.2010, 17–119.
- 7. Grzybek T., Klinik J., Helmut P., 1998. Manganese supported catalysts for selective catalytic reduction of nitrogen oxides with ammonia. J. Chem. Soc., Faraday Trans., 24, 3527–3780. DOI: 10.1039/A803210F.
- 8. Grzybek T., Klinik J., Samojeden B., Suprun V., Papp H., 2008. Nitrogen-promoted active carbons as DeNOx catalysts 1. The influence of modification parameters on the structure and catalytic properties. Catalysis Today, 137, 228–234. DOI: 10.1016/j.cattod.2007.11.009.
- 9. Grzybek T., Motak M., Klinik J., Papp H., 2008. The influence of Mn promotion on the structure and catalytic properties in SCR. Catal. Today, 137, 235–241. DOI: 10.1016/j.cattod.2007.11.006.
- 10. Huang B., Liu G.,Wang P., Zhao X., Xu H., 2019. Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes, 7, 4–16. DOI: 10.3390/PR7030167.
- 11. Huang H., Ye D., Huang B., Wei Z., 2008. Vanadium supported on viscose-based activated carbon fibers modified by oxygen plasma for the SCR of NO. Catal. Today, 139, 100–108. DOI: 10.1016/j.cattod.2008.08.028.
- 12. Kiełtyka M., Soares Dias A.P., Kubiczek H., Sarapata B., Grzybek T., 2015. The influence of poisoning on the deactivation of DeNOx catalysts. Comptes Rendus Chimie, 18, 1036–1048. DOI: 10.1016/j.crci.2015.05.004.
- 13. Larionov K., Mishakov I., Slyusarskiy K., Bolgova D., Lavrinenko S., 2017. Influence of Cu(NO3)2 initiation additive in two-stage mode conditions of coal pyrolytic decomposition. In MATEC Web Conf., Smart Grids 2017, 141, 01026. DOI: 10.1051/matecconf/201714101026.
- 14. Matzner S., Boehm H.P., 1998. Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon, 36, 1697–1703. DOI: 10.1016/S0008-6223(98)90047-1.
- 15. Motak M., Kuterasiński Ł., Da Costa P., Samojeden B., 2015. Catalytic activity of layered aluminosilicates for VOC oxidation in the presence of NOx. Comptes Rendus Chimie, 18, 1106–1113. DOI: 10.1016/j.crci.2015.05.005.
- 16. Nowicki P., Pietrzak R., 2011. Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on theirNO2 sorption capacity under dry conditions. Chem. Eng. J., 166, 1039–1043. DOI: 10.1016/j.cej.2010.11.101.
- 17. Nowicki P., Kazmierczak J., Sawicka K., Pietrzak R., 2015. Nitrogen-enriched activated carbons prepared by the activation of coniferous tree sawdust and their application in the removal of Nitrogen dioxide. Int. J. Environ. Sci. Technol., 12, 2233–2244. DOI: 10.1007/s13762-014-0611-2.
- 18. Pietrzak R.,Wachowska H., Nowicki P., 2006. Preparation of nitrogen-enriched activated carbons from brown coal. Energy Fuels, 20, 1275–1280. DOI: 10.1021/ef0504164.
- 19. Samojeden B., Klinik J., Grzybek T., Papp H., 2008. Charakterystyka modyfikowanych w˛egli aktywnych jako katalizatorow w reakcji DeNOx – The characterization of modified active carbons for DeNOx reaction. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 24 (3/3), 295–303.
- 20. Samojeden B., Grzybek T., 2016. The influence of the promotion of N-modified activated carbon with iron-on NO removal by NH3-SCR. Energy, 116, 1484–1491. DOI: 10.1016/j.energy.2016.04.059.
- 21. Sing K., Everett D., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 57, 603–619. DOI: 10.1351/pac198557040603.
- 22. Singoredjo L., Slagt M., van Wees S., Kapteijn F., Moulijn J.A., 1990. Selective catalytic reduction of NO with NH3 over carbon-supported copper catalysts. Catal. Today, 7, 157–165. DOI: 10.1016/0920-5861(90)85014-F.
- 23. Teng H., Hsu L.-Y., LaiY.-C., 2001. Catalytic reduction of NO with NH3 over carbons impregnated with Cu and Fe. Environ. Sci. Technol., 35, 2369–2374. DOI: 10.1021/es001674c.
- 24. Ziemiański P., Kałahurska K., Samojeden B., 2017. Selective catalytic reduction of NO with NH3 on mixed alumina–iron (III) oxide pillared montmorillonite “Cheto” Arizona, modified with hexamine cobalt (III) chloride. Adsorpt. Sci. Technol., 35, 825–833. DOI: 10.1177/0263617417710141.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e96bb7b-b313-497c-b427-f2670e89377d