PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Al2O3 decoration on the opto-electrical properties of a porous Si/Cr2O3 composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we present an extensive investigation of the effect of Al₂O₃ decoration on the morphological, structural and opto-electronic properties of a porous Si (Sip)/Cr₂O₃ composite. The Sip layers were prepared by the anodization method. Al₂O₃ and Cr₂O₃ thin films were deposited by physical vapour deposition. The morphological and micro-structural properties of Sip/Cr₂O₃/Al₂O₃ were studied using the scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction techniques. It was found that Al₂O₃ decoration with different concentration strongly affects the Sip/Cr₂O₃ microstructure mainly at the level of porosity. Variable angle spectroscopic ellipsometry demonstrates a strong correlation between optical constants (n and k) of Sip/Cr₂O₃/Al₂O₃ and microstructure properties. Dielectric properties of Sip/Cr₂O₃/Al₂O₃ such as electrical conductivity and conduction mechanism were explored using impedance spectroscopy over the temperature interval ranging from 340 to 410°C. A semiconductor to the metallic transition has been observed at high frequency.
Twórcy
  • Laboratory of Semiconductor Nanostructures and Advanced Technologies (LASNTA), Research Centre and Energy Technologies, Borj-Cédria, Tunisia
  • Higher Institute of Environmental Sciences and Technologies of Borj-Cédria (ISSTE)
autor
  • University of Tunis El Manar, National School of Engineers Tunis, LR-11-ES19 Laboratory of Applied Mechanics and Engineering (LR-MAI), 1002 Tunis, Tunisia
autor
  • Laboratory of Semiconductor Nanostructures and Advanced Technologies (LASNTA), Research Centre and Energy Technologies, Borj-Cédria, Tunisia
autor
  • Laboratory of Semiconductor Nanostructures and Advanced Technologies (LASNTA), Research Centre and Energy Technologies, Borj-Cédria, Tunisia
autor
  • Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
  • Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates Sharjah
autor
  • Laboratory of Semiconductor Nanostructures and Advanced Technologies (LASNTA), Research Centre and Energy Technologies, Borj-Cédria, Tunisia
Bibliografia
  • [1] Stesmansa, A. & Afanasev, V. V. Paramagnetic defects in annealed ultrathin layers of SiOx, Al2O3, and ZrO2 on (100) Si. Appl. Phys. Lett. 85, 17 (2004). http://dx.doi.org/10.1063/1.1787152
  • [2] Hutchins, M. G. Selective thin film coatings for the conversion of radia solartion. Tech Coat. Surf.. 20, 301– (1983). 320http://dx.doi.org/10.1016/0376-4583(83)90111-5
  • [3] Geotti-Bianchini, F., Guglielmi, M., Polato, P. & Soraru, G. D. Preparation and characterization of Fe, Cr and Co oxide films on flat glass from gels. J. Non. Cryst. Solids 63, 251–259 (1984). http://dx.doi.org/10.1016/0022-3093(84)90404-6
  • [4] Schuster, A. P., Nguyen, D. & Caporaletti, O. Solid state electrochromic infrared switchable windows. Sol. Energy Mater. 13, 153–160 (1986). http://dx.doi.org/10.1016/0165-1633(86)90041-9
  • [5] Koksbang, R. & Norby, P. Reversibility of the electrochemical lithium insertion in Cr3O8 comparison with LiCr3O8. Electrochim. Acta 36, 127–133 (1991). http://dx.doi.org/10.1016/0013-4686(91) 85189-E
  • [6] Pang, X. et al. Annealing effects on microstructure and mechanical properties of chromium oxide coatings. Thin Solid Films 516, 4685–4689 (2008). http://dx.doi.org/10.1016/j.tsf.2007.08.083
  • [7] Weckhuysen, B. & Schoonheydt, R. Alkanedehy, rogenation over supported chromium oxide catalysts. Catal. Today 417, 223–232 (1999). http://dx.doi.org/10.1016/S0920-5861(99)00047-4
  • [8] Puurunen, R. & Weckhuysen, B. Spectroscopic study on the irreversible deactivation of chromia alumina dehydrogenation catalysts. J. Catal. 210, 418–430 (2002). http://dx.doi.org/10.1016/j.ces.2004.07.103
  • [9] Gaspar, A., Brito, J. & Dieguez, L. Characterization of chromium species in catalysts for dehydrogenation and polymerization. Mol. Catal. A. Chem. 203, 251266 (2003). http://dx.doi.org/10.1016/S1381-1169(03)00381-9
  • [10] PeiLi, P., ZhongLang, W., Luan, K. XiYan, L. & JunGuo, Y. The promotion effects of Ni on the properties of Cr/Al catalysts for propane dehydrogenation reaction. Appl. Catal. A. Gen. 522, 172–179 (2016). http://dx.doi.org/10.1016/j.apcata.2016.05.007
  • [11] Nemykina, E. I. et al. Effect of chromium content on the properties of a microspherical alumina-chromium catalyst for isobutane dehydrogenation prepared with the use of a centrifugal thermal activation product of gibbsite. Kinet. Catal. 51, 898–906 (2010). http://dx.doi.org/10.1134/S0023158410060169
  • [12] Nable, Y. C., Suib, S. L. & Galasso , F. S. Metal organic chemical vapour deposition of Al2O3 and Cr2O3 on nickel as oxidation barriers. Surf. Coat. Tech. 186, 423–430 (2004). http://dx.doi.org/10.1016/j.surfcoat.2003.11.022
  • [13] Nemykina, E. I. et al. Effect of chromium content on the proper ties of a microspherical alumina chromium catalyst for isobutane dehydrogenation prepared with the use of a centrifugal thermal activation product of gibbsite. Kinet. Catal. 51, 898–906 (2010). http://dx.doi.org/10.1134/S0023158410060169
  • [14] Yuzheng, G., Stewart, C. & Robertson, J. J. Electronic and magnetic properties of Ti2O3, Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional. J. Phys. Condens. Matter. 24, 1–8 (2012). http://dx.doi.org/10.1088/0953-8984/24/32/325504
  • [15] Holt, A. & Kofstad, P. Electrical conductivity and defect structure of Cr2O3. I. High temperatures (>1000°C), Solid State Ion. 69, 127–136 (1994). http://dx.doi.org/10.1016/0167-2738(94)90401-4
  • [16] Dehouche, Z. et al. Cycling and thermal stability of nanostructured MgH2–Cr2O3 composite for hydrogen storage. J. Alloy. Compound. 347, 31932 (2002). http://dx.doi.org/10.1016/S0925-8388(02)00784-3
  • [17] Sousa, P. M., Silvestre, A. J. & Conde, O. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition. Thin Solid Films 519, 36533657 (2011). http://dx.doi.org/10.1016/ j.tsf.2011.01.382
  • [18] Bagmut, A. G. et al. Morphology and conjunction of nanocrystals growing in Cr-O and V-O amorphous films during annealing. Russian Phys. J. 50, 1071–1078 (2007).http://dx.doi.org/10.1007/ s11182-007-0157-6
  • [19] Borisov, P. A., Hochstrat, V. V., Shvartsman, W., Kleemann, T., Eimüller, A. & Rodrguez, F. Thin Cr2O3 Films for Magneto electric Data storage deposited by Reactive E-beam Evaporation. Ferroelectr. Lett. Sect. 70, 147–152 (2008). http://dx.doi.org/10.1080/00150190802384518
  • [20] Levchuk, D., Koch, F., Maier, H. & Bolt, H. Deuterium permeation through Eurofer and a-alumina coated Eurofer. J. Nucl. Mater. 328, 1036 (2004). http://dx.doi.org/10.1016/j.jnucmat.2004.03.008
  • [21] Koch, F. et al. Crystallization behaviour of arc-deposited ceramic barrier coatings. J. Nucl. Mater. 140, 3–29 (2004). http://dx.doi.org/10.1016/j.jnucmat.2004.04.206
  • [22] Misho, R. H., Murad, W. A. & Fattahallah, G. H. Preparation and optical properties of thin films of CrO3 and Cr2O3 prepared by the method of chemical spray pyrolysis. Thin Solid Films 169, 235–239 (1989). http://dx.doi.org/10.1016/0040-6090(89)90706-2
  • [23] Vepřek, S. Plasma-induced and plasma-assisted chemical vapour deposition. Thin Solid Films 130, 135–154 (1985). http://dx.doi.org/10.1016/0040-6090(85)90303-7
  • [24] YiWu, S., Ning, H. & Dong, W. Investigations on the local structures of Cr3+(3d3) and Nd3+(4f3) ions at the trigonal Bi3+ sites in Bi4Ge3O12. Opt. Mater. 28, 1095–1100 (2006). http://dx.doi.org/10.1016/j.optmat.2005.06.010
  • [25] Ghrib, M. et al. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapour deposition for Solar energy applications. Appl. Surf. Sci. 257, 9129-9134 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.05.113
  • [26] Chayen, N. E., Saridakis, E., El-Bahar, Y. & Nemirovsky, R. Porous silicon: an effective nucleation-inducing material for protein crystallization. J. Mol. Biol. 312, 591–595 (2001). http://dx.doi.org/10.1006/jmbi.2001.4995
  • [27] Kluth, O. et al. Modified Thornton model for magnetron sputtered zinc oxide,film structure and etching behaviour. Thin Solid Films 442, 80–85 (2003). http://dx.doi.org/10.1016/s0040-6090(03)00949-0
  • [28] Cullity, B. D. & Stock, S. R. Elements of X-Ray Diffraction. 3rd edn (Prentice Hall, Upper Saddle River, New Jersey, 2001).
  • [29] De Laet, J., Terryn, H. & Vereecken, J. Development of an optical model for steady state porous anodic films on aluminium formed in phosphoric acid Thin Solid Films 320, 241–252 (1998). http://dx.doi.org/10.1016/S0040-6090(97)00741-4
  • [30] Huang, G. S., Wu, X. L., Siu, G. G. & Chu, P. K. On the origin of light emission from porous anodic alumina formed in sulfuric acid. Solid State Commun. 137, 621–624 (2006). http://dx.doi.org/10.1016/j.ssc.2006.01.005
  • [31] Puranik, S. M., & Mehrotra, S. C. Static permittivity of binary mixtures using an improved bruggeman model. J. Mol. Liq. 59, 173–177 (1994). http://dx.doi.org/10.1016/0167-7322(93)00665-6
  • [32] Petrik, P. et al. Methods for optical modelling and cross-checking in ellipsometry and scatterometry. in Proc. SPIE Optical Metrology, vol. 9526 (2015). http://dx.doi.org/10.1117/12.2184833
  • [33] Khamzin, A. A., Nigmatullin, R. R. & Popo, I. I. Microscopic model of a non-Debye dielectric relaxation, The Cole-Cole law and its generalization. Theor. Math. Phys. 173, 1604–1619 (2012). http://dx.doi.org/10.1007/s11232-012-0135-1
  • [34] Badapanda, T. et al. Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J .Mater. Sci Mater. Electron. 26, 3069–3082 (2015) http://dx.doi.org/10.1007/s10854-015-2799-4
  • [35] Stern, H. et al. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9, 1205–1212 (2017). http://dx.doi.org/10.1038/nchem.2856
  • [36] Liu, Q., Peng, M., Shen, B., Hu, B. & Chen, Q. Polymer chain diffusion and Li+ hopping of poly(ethylene oxide)/LiAsF6 crystalline polymer electrolytes as studied by solid state NMR and ac impedance. Solid State Ion. 255, 74-79 (2014). http://dx.doi.org/.10.1016/j.ssi.2013.11.053
  • [37] Sharma, H. et al.Ac electrical conductivity and magnetic properties of BiFeO3–CoFe2O4 nanocomposites. J. Alloy. Compd. 599, 32–33 (2014). http://dx.doi.org/10.1016/j.jallcom.2014.02.024
  • [38] Yassin, Y. A., Raouf, M., Abdelghany, A. M. & Abdelrazek, E. M. Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2- hydroxypropyl acrylate) filled with graphene oxide. J. Mater. Sci. Electron. 29, 15931–15945 (2018). http://dx.doi.org/10.1007/s10854-018-9679-7
  • [39] Hayat, M., Rafiq, S. K., Durrani , M. M. & Hasan, A. Impedancespectroscopy and investigation of conduction mechanism in BaMnO3 nanorods. Physica B, Condensed Matter. 406, 309–314, (2011). http://dx.doi.org/10.1016/j.physb.2010.09.026
  • [40] Ngai, K. L., Jonscher, A. K. & White, C. T. On the origin of the universal dielectric response. Condens. Matter. Phys. 277, 185–189 (1979). http://dx.doi.org/10.1038/277185a0
  • [41] Belin, R., Zerouale, A., Pradel, A. & Ribes, M. Ion dynamics in the argyrodite compound Ag7GeSe5I, non-Arrhenius behaviour and complete conductivity spectra. Solid State Ion.143, 445–455 (2001). http://dx.doi.org/10.1016/S0167-2738(01)00883-9
  • [42] Saravanan, S., Anantharaman,. M. R. & Venkatachalam, V. Structural and electrical studies on tetrameric cobalt phthalocyanine and polyaniline composites. Mater. Sci. Eng. B 135, 113–119 (2006). http://dx.doi.org/10.1016/j.mseb.2006.08.048
  • [43] Boughalmi, R., Boukhachem, A., Kahlaoui, M., Maghraoui, H. & Amlouk,. M. Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Mater. Sci. Semicond. Process. 26, 593–602 (2014). http://dx.doi.org/10.1016/j.mssp.2014.05.059
  • [44] Ouni ,B. et al. Investigation of electrical and dielectric properties of antimony oxide (Sb2O4) semiconductor thin films for TCO and optoelectronic applications. J. Non-Crys. Solids 367, 1–7 (2013). http://dx.doi.org/10.1016/j.jnoncrysol.2013.02.006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e9572c1-ed65-47ab-9f48-1393dbf26e59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.