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An investigation on an unsteady MHD natural convection flow with radiative heat transfer of a viscous, 
incompressible, electrically conducting and optically thick fluid past an impulsively moving vertical plate with 
ramped temperature in a porous medium in the presence of a Hall current and thermal diffusion is carried out. An 
exact solution of momentum and energy equations, under Boussinesq and Rosseland approximations, is obtained 
in a closed form by the Laplace transform technique for both ramped temperature and isothermal plates. 
Expressions for the skin friction and Nusselt number for both ramped temperature and isothermal plates are also 
derived. The numerical values of fluid velocity and fluid temperature are displayed graphically versus the 
boundary layer coordinate y for various values of pertinent flow parameters for both ramped temperature and 
isothermal plates. The numerical values of the skin friction due to primary and secondary flows are presented in 
tabular form for various values of pertinent flow parameters. 
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1. Introduction 
 
 Natural convection flows are frequently encountered in science and technological problems such as 
chemical catalytic reactors, nuclear waste repositories, petroleum reservoirs, fiber and granular insulation, 
geothermal systems etc. Natural convection flows from bodies with different geometries are extensively 
investigated as it is evident from review articles and books published so far (Ede, 1967; Gebhart, 1973; 
Jaluria, 1980; Raithby and Hollands, 1985). A convective heat transfer flow from bodies with different 
geometries embedded in a porous medium is of significant importance due to its varied and wide applications 
in many areas of science and technology, namely, drying of porous solids, thermal insulation, enhanced 
recovery of oil and gases, cooling of nuclear reactors, underground energy transport etc. Keeping in view the 
importance of such fluid flow problems, a number of investigations on natural convection flow near a 
vertical plate embedded in a porous medium have been carried out. Mention may be made of research studies 
of Cheng and Minkowycz (1977), Nakayama and Koyama (1987), Lai and Kulacki (1991) and Hsieh et al. 
(1993). Comprehensive reviews of free convection flows with heat and mass transfer in porous media are 
well presented by Pop and Ingham (2002), Vafai (2005) and Nield and Bejan (2006). An investigation of a 
hydromagnetic free convection flow in a porous medium under different conditions has been carried out by 
several researchers due to a significant effect of the magnetic field on the boundary layer control, plasma 
studies, geothermal energy extraction, metallurgy, petroleum and chemical engineering etc and on the 
performance of so many engineering devices using electrically conducting fluids, viz., MHD energy 
generators, MHD pumps, MHD accelerators, MHD flow-meters, nuclear reactors using liquid metal coolants 
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etc. Raptis and Kafousias (1982) studied a steady free convection flow past an infinite vertical porous plate 
through a porous medium in the presence of a magnetic field. Raptis (1986) investigated an unsteady two-
dimensional natural convection flow past an infinite vertical porous plate embedded in a porous medium in 
the presence of a magnetic field. Chamkha (1997a) studied a transient MHD free convection flow through a 
porous medium supported by a surface. Chamkha (1997b) also investigated a hydromagnetic natural 
convection flow from an isothermal inclined surface adjacent to a thermally stratified porous medium. 
Aldoss et al. (1995) considered a combined free and forced convection flow from a vertical plate embedded 
in a porous medium in the presence of a magnetic field. Kim (2000) studied an MHD natural convection 
flow past a moving vertical plate embedded in a porous medium. Ibrahim et al. (2004) studied an unsteady 
hydromagnetic free convection flow of a micro-polar fluid and heat transfer past a vertical porous plate 
through a porous medium in the presence of thermal and mass diffusion with a constant heat source. 
Makinde and Sibanda (2008) investigated a hydromagnetic mixed convective flow with heat and mass 
transfer past a vertical plate embedded in a porous medium with constant wall suction. Makinde (2009) 
considered a hydromagnetic mixed convection flow and mass transfer past a vertical porous plate with 
constant heat flux embedded in a porous medium. 
 In all these investigations, the effects of radiation are not taken into account. Radiative heat transfer 
along with free convection is important in many areas of science and engineering, viz., glass production, 
furnace design, electric power generation, thermo-nuclear fusion, casting and levitation, high temperature 
aerodynamics, propulsion systems, plasma physics, space flight, solar power technology, spacecraft re-entry 
aerothermodynamics, etc. In many practical applications, depending on the surface properties and 
configuration, radiative heat transfer is often comparable with that of convective heat transfer. It is worthy of 
note that unlike convection/conduction the governing equations taking into account radiative heat transfer 
become quite complicated and hence many difficulties arise while solving such equations. However, some 
reasonable approximations are proposed to solve the governing equations with radiative heat transfer. The 
text book by Sparrow and Cess (1970) describes the essential features of radiative heat transfer. Chang et al. 
(1983) investigated a natural convection flow with radiative heat transfer in two-dimensional complex 
enclosures. Cess (1966) studied laminar free convection along a vertical isothermal plate with thermal 
radiation using the Rosseland diffusion approximation. Hossain and Takhar (1996) considered radiation 
effects on a mixed convection boundary layer flow along a vertical plate with uniform surface temperature 
using the Rosseland flux model. Chamkha (1997c) analyzed solar radiation assisted natural convection in a 
uniform porous medium supported by a vertical flat plate. Chamkha et al. (2001) studied a laminar free 
convection flow of air past a semi-infinite vertical plate in the presence of chemical species concentration 
and thermal radiation. Muthucumaraswamy and Ganesan (2003) investigated radiation effects on flow past 
an impulsively started vertical plate with variable temperature. Ghosh and Bég (2008) discussed the effects 
of radiation on a transient free convection flow past an infinite hot vertical impulsively moving plate in a 
porous medium. Chamkha (2000) discussed thermal radiation and buoyancy effects on a hydromagnetic flow 
over an accelerating permeable surface with heat source or sink. Raptis and Massalas (1998) studied an 
oscillatory magnetohydrodynamic flow of a gray, absorbing-emitting fluid with a non-scattering medium 
past a flat plate in the presence of radiation assuming the Rosseland approximation. Azzam (2002) 
considered radiation effects on an MHD mixed convection flow past a semi-infinite moving vertical plate for 
high temperature differences. Cookey et al. (2003) analyzed the influence of viscous dissipations and 
radiation past an infinite heated vertical plate in a porous medium with time-dependent suction. Mahmoud 
Mostafa (2009) discussed thermal radiation effects on an unsteady MHD free convection flow past an 
infinite vertical porous plate taking into account the effects of viscous dissipation. Ogulu and Makinde 
(2009) investigated an unsteady hydromagnetic free convection flow of a dissipative and radiative fluid past 
a vertical plate with constant heat flux. 
 In all these investigations, an analytical or numerical solution is obtained assuming conditions for 
fluid velocity and temperature at the plate as continuous and well defined. However, there exist several 
practical problems which may require non-uniform or arbitrary wall conditions. Keeping this fact in view, 
Hayday et al. (1967), Kao (1975), Kelleher (1971) and Lee and Yovanovich (1991) investigated a free 
convection flow from a vertical plate with step discontinuities in the surface temperature. Recently, Patra et 



MHD natural convection flow with radiative heat transfer … 1203 

al. (2012) investigated the effects of radiation on a natural convection flow of a viscous and incompressible 
fluid near a vertical flat plate with ramped temperature. They compared the effects of radiative heat transfer 
on a natural convection flow near a ramped temperature plate with the flow near an isothermal plate. It is 
well known that when density of an electrically conducting fluid is low and/or the applied magnetic field is 
strong, effects of the Hall current become significant. The Hall current plays an important role in determining 
flow-features of the problem because it induces a secondary flow in the flow-field. Therefore, it is 
appropriate to study the effects of the Hall current on an MHD natural convection flow with radiative heat 
transfer past a moving vertical plate with ramped temperature. 
 The objective of the present investigation is to study an unsteady natural convection transient flow of 
a viscous, incompressible and electrically conducting fluid with radiative heat transfer past an impulsively 
moving vertical plate embedded in a fluid saturated porous medium taking into account the effects of the 
Hall current and thermal diffusion when the temperature of the plate has a temporarily ramped profile. 
 
2. Formulation of the problem and its solution 
 
 Consider an unsteady flow of a viscous, incompressible, electrically conducting and optically thick 
fluid past an infinite vertical plate embedded in a uniform porous medium. The coordinate system is chosen 
in such a way that the x - axis is considered along the plate in upward direction and the y - axis normal to 

the plane of the plate in the fluid. A uniform transverse magnetic field 0B  is applied in a direction which is 

parallel to the y - axis. Initially, i.e., at time t 0 , both the fluid and plate are at rest and have a uniform 

temperature T . At time t 0 , the plate starts moving in the x - direction with uniform velocity 0U . The 

temperature of the plate is raised or lowered to  w 0T T T t t       when 0t t  , and it is maintained at 

uniform temperature wT   when 0t t   ( 0t being the characteristic time). The geometry of the problem is 

shown in Fig.1. 

 
 

Fig.1. Geometry of the problem. 
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 Since the plate is of infinite length in the x  and z  directions and is electrically non-conducting, all 
physical quantities except pressure, depend on y  and t  only. The induced magnetic field generated by the 

fluid motion is neglected in comparison to the applied one, i.e., the magnetic field  , ,00 B 0B . This 

assumption is valid because the magnetic Reynolds number is very small for liquid metals and partially 
ionized fluids (Cramer and Pai, 1973). Also no applied or polarized voltages exist so the effect of 
polarization of the fluid is negligible, i.e., the electric field  , ,0 0 0E . This corresponds to the case where 

no energy is added or extracted from the fluid by electrical means (Cramer and Pai, 1973).  
 Keeping in view the assumptions made above, governing equations for the natural convection flow 
of a viscous, incompressible and electrically conducting fluid within a uniform porous medium with radiative 
heat transfer taking the Hall current into account, under the Boussinesq approximation, are given by 
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 Initial and boundary conditions for the fluid-flow problem are 
 
  , for and ,u w 0 T T y 0 t 0                (2.4a) 
 
  , at for ,0u U w 0 y 0 t 0             (2.4b) 
 

    at for ,w 0 0T T T T t t y 0 0 t t                   (2.4c) 

 
  at for ,w 0T T y 0 t t        (2.4d) 
 
  , , as for .u 0 w 0 T T y t 0                (2.4e) 

 
 For an optically thick fluid, in addition to emission there is also self-absorption and usually the 
absorption coefficient is wavelength dependent and large (Bestman, 1985) so we can adopt the Rosseland 
approximation for the radiative flux vector rq  (Azzam, 2002). Thus rq  is given by  
 

  .
4

r
4 T

q
y3k





   


        (2.5) 

 
 It is assumed that there is a small temperature difference between the fluid temperature T  and free 

stream temperature T . Equation (2.5) is linearized by expanding 4T   in Taylor series about the free stream 
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temperature .T  Neglecting the second and higher order terms in  T T  , 4T   is expressed in the 

following form 
 

  .4 3 4T 4T T 3T        (2.6) 
 
 Making use of Eqs (2.5) and (2.6) in Eq.(2.3), we obtain 
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 Equations (2.1), (2.2) and (2.7), in a non-dimensional form, become 
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 It is appropriate to mention here that the characteristic time 0t  is defined, according to the non-
dimensional process mentioned above, as 
 

  .2
0 0t U   (2.12) 

 
 Initial and boundary conditions Eqs (2.4a) to (2.4e), in a non-dimensional form, become 
 
  , for and ,u w 0 T 0 y 0 t 0         (2.13a) 
 
  , at for ,u 1 w 0 y 0 t 0      (2.13b) 
 
  at for ,T t y 0 0 t 1        (2.13c) 
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  at for ,T 1 y 0 t 1       (2.13d) 
 
  , , as for .u 0 w 0 T 0 y t 0         (2.13e) 
 
 Combining Eqs (2.8) and (2.9), we obtain 
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 Initial and boundary conditions Eqs (2.13a) to (2.13e), in a compact form, are given by 
 
  , for and ,F 0 T 0 y 0 t 0      (2.15a) 
 
  at    for ,F 1 y 0 t 0     (2.15b) 
 
  at for ,T t y 0 0 t 1        (2.15c) 
 
  at for ,T 1 y 0 t 1       (2.15d) 
 
  , as for .F 0 T 0 y t 0        (2.15e) 
 
 Equations (2.10) and (2.14) with the use of the Laplace transform and initial conditions Eq.(2.15a) 
reduce to 
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where 
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a F y s F y t e dt T y s T y t e dt
1 N

 
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   ( s  being Laplace transform 

parameter). 
 Boundary conditions Eqs (2.15b) to (2.15e), after taking the Laplace transform, become 
 

   , at ,s 2F 1 s T 1 e s y 0        (2.18a) 

 

  , as .F 0 T 0 y       (2.18b) 
 
 Equations (2.16) and (2.17), subject to the boundary conditions Eqs (2.18a) and (2.18b), are solved 
and the solution for  ,T y s  and  ,F y s  is given by 
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where        rG , and .1a 1 N 1 K a 1         

 
 An exact solution for the fluid temperature  ,T y t  and fluid velocity  ,F y t  is obtained by taking 

the inverse Laplace transform of Eqs (2.19) and (2.20) which is presented in the following form after 
simplification (Abramowitz and Stegun, 1972). 
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  H t 1 and  erfc x  are, respectively, the unit step function and complementary error function.  

 
3. Solution in case of isothermal plate 
 
 Solutions Eqs (2.21) and (2.22) present the analytical solution for the fluid temperature and fluid 
velocity for the flow of a viscous, incompressible, electrically conducting and optically thick fluid past an 
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impulsively moving vertical plate with ramped temperature taking the Hall current, radiation and thermal 
diffusion into account. In order to know the influence of ramped temperature distribution within the plate on 
the fluid flow, it is appropriate to compare such a flow with the one past an impulsively moving vertical plate 
with uniform temperature. Keeping in view the assumptions made in the present study, a solution for the 
fluid temperature and fluid velocity for a flow past an impulsively moving vertical isothermal plate is 
obtained and is expressed in the following form 
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where  *d    . 

 
4. Skin friction and Nusselt number 
 
 The expressions for the primary skin friction x , secondary skin friction z  and Nusselt number Nu, 
which are measures of shear stress at the plate due to primary flow, shear stress at the plate due to secondary 
flow and rate of heat transfer at the plate respectively, are presented in the following form for ramped 
temperature and isothermal plates. 
 
(i) For ramped temperature plate 
  

          erfc , , ,t
x z 1 1

1
i t 1 e F y t H t 1 F y t 1

t
              

  (4.1) 

 

    Nu
a

2 t t 1H t 1   


  (4.2) 

 
where 
 

                  , erfc erfc
t

t t
1 2

e 1 a
F y t t 1 e a t 1 e

tt


                    

 

    
                 erfc erfc .t1 1 1 1 a 1

t t 1 e t 1 2 t
t 2 t

    
                           
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(ii) For isothermal plate 
 

  
    
       

*

*

erfc

erfc

t
x z

tt

1
i 1 d t 1 e

t

1
d e t 1 e

t



 

 
          

 


          

  (4.3) 

     *erfc ,
a a

a t 1 d
t t


      

 

 

  Nu .
a

t



  (4.4) 

 
 It is evident from the expressions Eqs (3.4) and (3.6) that, for a given time, the Nusselt number Nu is 

proportional to rP
a

N 1

 
   

 in both the cases, i.e., the Nusselt number Nu increases on increasing the 

Prandtl number rP  while it decreases on increasing the radiation parameter N. Since rP  expresses the relative 

strength of viscosity to thermal diffusivity of the fluid, rP  decreases on increasing thermal diffusivity of the 
fluid. This implies that thermal diffusion and radiation tend to reduce the rate of heat transfer at both ramped 
temperature and isothermal plates. Also it is noticed from Eqs (3.4) and (3.6) that Nu increases for the 
ramped temperature plate whereas it decreases for the isothermal plate on increasing time t. This implies that, 
as time progresses, the rate of heat transfer at the ramped temperature plate is enhanced whereas it is reduced 
at the isothermal plate. 
 
5. Results and discussions  
 
 In order to highlight the influence of various physical quantities, namely, the Hall current, thermal 
buoyancy force, permeability of medium, radiation and time on flow-field in the boundary layer region, the 
numerical values of fluid velocity, computed from the analytical solutions Eqs (2.22) and (3.2), are depicted 
graphically versus the boundary layer coordinate y in Figs 2 to 11 for various values of the Hall current 
parameter m, Grashof number rG , permeability parameter 1K , radiation parameter N and time t taking the 

magnetic parameter 2M 15  and Prandtl number rP .0 71 . It is noticed from Figs 2 to 11 that, for both 
ramped temperature and isothermal plates, the primary velocity u and secondary velocity w attain a 
distinctive maximum value in the vicinity of the surface of the plate and then decrease properly on increasing 
the boundary layer coordinate y to approach the free stream value. Also, primary and secondary fluid 
velocities are faster in the case of the isothermal plate than that of ramped temperature plate. It is evident 
from Figs 2 to 11 that, for both ramped temperature and isothermal plates, the primary velocity u and 
secondary velocity w increase on increasing the Hall current parameter m, Grashof number rG , permeability 

parameter 1K , radiation parameter N and time t. 
 This implies that, for both ramped temperature and isothermal plates, the Hall current, thermal 
buoyancy force, permeability of the medium and radiation tend to accelerate the fluid flow in the primary 
and secondary flow directions in the boundary layer region. As time progresses, for both ramped temperature 
and isothermal plates, primary and secondary fluid velocities are getting accelerated in the boundary layer 
region. 
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Fig.2. Primary velocity profiles when Gr=6, K1=0.5, N=1 and t=0.4. 
 

 
 

Fig.3. Secondary velocity profiles when Gr=6, K1=0.5, N=1 and t=0.4. 
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Fig.4. Primary velocity profiles when m=0.5, K1=0.5, N=1 and t=0.4. 
 
 

 
 

Fig.5. Secondary velocity profiles when m=0.5, K1=0.5, N=1 and t=0.4. 
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Fig.6. Primary velocity profiles when m=0.5, Gr=6, N=1 and t=0.4. 
 
 

 
 

Fig.7. Secondary velocity profiles when m=0.5, Gr=6, N=1 and t=0.4. 
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Fig.8. Primary velocity profiles when m=0.5, K1=0.5, Gr=6 and t=0.4. 
 
 

 
 

Fig.9. Secondary velocity profiles when m=0.5, K1=0.5, Gr=6 and t=0.4. 
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Fig.10. Primary velocity profiles when m=0.5, K1=0.5, Gr=6 and N=1. 
 

 
 

Fig.11. Secondary velocity profiles when m=0.5, K1=0.5, Gr=6 and N=1. 
 
 In order to study the influence of radiation, thermal diffusion and time on the temperature field, 
numerical values of the fluid temperature T, computed from the analytical solutions Eqs (2.21) and (3.1), are 
displayed graphically versus the boundary layer coordinate y in Figs 12 to 14 for various values of N, rP  and 
t for both ramped temperature and isothermal plates. It is revealed from Figs 12 to 14 that, for both ramped 
temperature and isothermal plates, the fluid temperature T increases on increasing either the radiation 
parameter N or time t whereas it increases on decreasing the Prandtl number rP . This implies that radiation 
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and thermal diffusion tend to enhance the fluid temperature in the boundary layer region for both ramped 
temperature and isothermal plates. As time progresses, for both ramped temperature and isothermal plates, 
there is an enhancement in the fluid temperature in the boundary layer region. It is noticed from Figs 12 to 14 
that the fluid temperature is maximum at the surface of the plate for both ramped temperature and isothermal 
plates and it decreases properly on increasing the boundary layer coordinate y to approach the free stream 
value. Also, the fluid temperature is lower for the ramped temperature plate than that for the isothermal plate. 
 

 
 

Fig.12. Temperature profiles when t=0.4 and Pr=0.71. 
 

 
 

Fig.13. Temperature profiles when t=0.4 and N=1. 
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Fig.14. Temperature profiles when N=1 and Pr=0.71. 
 
 The numerical values of the primary skin friction x  and secondary skin friction z  for both ramped 
temperature and isothermal plates, computed from expressions Eqs (3.3) and (3.5), are presented in a tabular 

form in Tabs 1 to 6 for various values of r,G , , and1m K N t  taking 2M 15  and rP .0 71 . It is evident 

from Tabs 1 to 6 that, for both ramped temperature and isothermal plates, the primary skin friction x  

decreases whereas the secondary skin friction z  increases on increasing r,G , , and .1m K N t  This implies 
that, for both ramped temperature and isothermal plates, the Hall current, thermal buoyancy force, 
permeability of the medium and radiation tend to reduce the primary skin friction whereas these physical 
quantities have a reverse effect on the secondary skin friction. As time progresses, for both ramped 
temperature and isothermal plates, there is a reduction in the primary skin friction whereas there is an 
enhancement in the secondary skin friction. 
 
Table 1. Skin friction at ramped temperature plate when K1=0.5, N=1 and t=0.4. 
 

 

   ↓ rG      
4 6 8 4 6 8 

0.5 3.52773 3.38016 3.2326 0.822145 0.840905 0.859665 
1 2.96664 2.80741 2.64819 1.2036 1.23458 1.26555 
1.5 2.49560 2.32391 2.15222 1.29095 1.3273 1.36365 

 
Table 2. Skin friction at isothermal plate when K1=0.5, N=1 and t=0.4. 
 

 

  m   rG      
4 6 8 4 6 8 

0.5 3.08103 2.71011 2.3392 0.873748 0.918309 0.962871 
1 2.47507 2.07006 1.66506 1.28524 1.35704 1.42884 
1.5 1.94873 1.50359 1.05846 1.37326 1.45076 1.52826 
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Table 3. Skin friction at ramped temperature plate when Gr=6, N=1 and t=0.4. 
 

 

   ↓  1K →  
0.2 0.5 0.8 0.2 0.5 0.8 

0.5 3.76606 3.38016 3.27836 0.763887 0.840905 0.863658 
1 3.2297 2.80741 2.69626 1.0949 1.23458 1.27702 
1.5 2.7941 2.32391 2.1994 1.14304 1.3273 1.38548 

 
Table 4. Skin friction at isothermal plate when Gr=6, N=1 and t=0.4. 
 

 

   ↓   1K →  
0.2 0.5 0.8 0.2 0.5 0.8 

0.5 3.13249 2.71011 2.59802 0.831435 0.918309 0.943612 
1 2.54491 2.07006 1.9422 1.19984 1.35704 1.40451 
1.5 2.05595 1.50359 1.34866 1.25277 1.45076 1.51236 

 
Table 5. Skin friction at ramped temperature plate when m=0.5, Gr=6 and K1=0.5. 
 

 

   ↓     →  
0.2 0.4 0.6 0.2 0.4 0.6 

1 3.63395 3.38016 3.11496 0.793177 0.840905 0.886539 
3 3.61757 3.35039 3.07493 0.796584 0.849511 0.899521 
5 3.60943 3.33604 3.05594 0.798411 0.853922 0.905993 

 
Table 6. Skin friction at isothermal plate when m=0.5, Gr=6 and K1=0.5. 
 

 

   ↓     →  
0.2 0.4 0.6 0.2 0.4 0.6 

1 2.8951 2.71011 2.63569 0.823002 0.918309 0.954028 
3 2.73568 2.5966 2.54322 0.887562 0.966504 0.993723 
5 2.66206 2.54562 2.50195 0.916847 0.988774 1.01172 

 
6. Conclusions 
 
 A theoretical study of an unsteady MHD natural convection flow with radiative heat transfer past an 
impulsively moving vertical plate with ramped temperature in the presence of the Hall current and thermal 
diffusion is presented. Significant results are summarized below: 
 
a. For both ramped temperature and isothermal plates:  
 
 The Hall current, thermal buoyancy force, permeability of the medium and radiation tend to 
accelerate the fluid flow in the primary and secondary flow directions in the boundary layer region. As time 
progresses, primary and secondary fluid velocities are getting accelerated in the boundary layer region. 
Primary and secondary fluid velocities are faster in the case of the isothermal plate than that of the ramped 
temperature plate. 

m
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N t
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b. For both ramped temperature and isothermal plates: 
 
 Radiation and thermal diffusion tend to enhance the fluid temperature in the boundary layer region. 
As time progresses, there is an enhancement in the fluid temperature in the boundary layer region. 
 
c. Fluid temperature is lower for the ramped temperature plate than for the isothermal plate. 
 
d. For both ramped temperature and isothermal plates: 
 
 The Hall current, thermal buoyancy force, permeability of the medium and radiation tend to reduce 
the primary skin friction whereas these physical quantities have a reverse effect on the secondary skin 
friction. As time progresses, there is a reduction in the primary skin friction whereas there is an enhancement 
in the secondary skin friction. 
 
Nomenclature 
 
 0B   – uniform magnetic field 

 pc   – specific heat at constant pressure 

 rG   – Grashof number 

 g   – acceleration due to gravity 
 1K   – permeability parameter 

 1K    – permeability of porous medium  

 1k   – thermal conductivity 

 *k   – mean absorption coefficient 

 2M   – magnetic parameter 
 e em      – Hall current parameter 

 N   – radiation parameter 
 rP   – Prandtl number 

 rq   – radiative flux vector 

 T   – fluid temperature 
 ,u w    – fluid velocity in x  and z - direction respectively 

    – coefficient of thermal expansion 
    – fluid density 
    – electrical conductivity 

 *   – Stefan-Boltzmann constant 
 e   – electron collision time 

    – kinematic coefficient of viscosity  
 e   – cyclotron frequency  
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