Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, improved oscillation conditions are established for the oscillation of all solutions of differential equations with non-monotone deviating arguments and nonnegative coefficients. They lead to a procedure that checks for oscillations by iteratively computing lim sup and lim inf on terms recursively defined on the equation's coefficients and deviating argument. This procedure significantly improves all known oscillation criteria. The results and the improvement achieved over the other known conditions are illustrated by two examples, numerically solved in MATLAB.
Czasopismo
Rocznik
Tom
Strony
327--356
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- School of Pedagogical and Technological Education (ASPETE) Department of Electrical and Electronic Engineering Educators 14121, N. Heraklio, Athens, Greece
autor
- Technical University of Kosice Faculty of Electrical Engineering and Informatics Department of Mathematics and Theoretical Informatics Letna 9, 042 00 Kosice, Slovakia
Bibliografia
- [1] E. Braverman, G.E. Chatzarakis, I.P. Stavroulakis, Iterative oscillation tests for differential equations with several non-monotone arguments, Adv. Difference Equ. 2016, 1-18.
- [2] E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), 3880-3887.
- [3] G.E. Chatzarakis, Differential equations with non-monotone arguments: Iterative Oscillation results, J. Math. Comput. Sci. 6 (2016) 5, 953-964.
- [4] G.E. Chatzarakis, On oscillation of differential equations with non-monotone deviating arguments, Mediterr. J. Math. (2017), 14:82.
- [5] G.E. Chatzarakis, T. Li, Oscillation criteria for delay and advanced differential equations with non-monotone arguments, Complexity (2018), in press.
- [6] G.E. Chatzarakis, Ó. Ócalan, Oscillations of differential equations with several non-monotone advanced arguments, Dynamical Systems: An International Journal (2015), 1-14.
- [7] L.H. Erbe, B.G. Zhang, Oscillation of first order linear differential equations with deviating arguments, Differential Integral Equations 1 (1988), 305-314.
- [8] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
- [9] N. Fukagai, T. Kusano, Oscillation theory of first order functional-differential equations with deviating arguments, Ann. Mat. Pura Appl. 136 (1984), 95-117.
- [10] J. Jaros, f.P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 45 (2000), 2989-2997.
- [11] C. Jian, On the oscillation of linear differential equations with deviating arguments, Math, in Practice and Theory 1 (1991), 32-40.
- [12] M. Kon, Y.G. Sficas, f.P. Stavroulakis, Oscillation criteria for delay equations, Proc. Amer. Math. Soc. 128 (1994), 675-685.
- [13] R.G. Koplatadze, T.A. Chanturija, Oscillating and monotone solutions of first-order differential equations with deviating argument, DifferentsiaFnye Uravneniya 18 (1982), f463-f465, f472 [in Russian].
- [14] R.G. Koplatadze, G. Kvinikadze, On the oscillation of solutions of first-order delay differential inequalities and equations, Georgian Math. J. 3 (1994), 675-685.
- [f 5] Y. Kuang, Delay differential equations with application in population dynamics, Academic Press, Boston, 1993.
- [16] T. Kusano, On even-order functional-differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), 75-84.
- [17] M.K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156 (1991), 274-286.
- [18] G. Ladas, f.P. Stavroulakis, Oscillations caused by several retarded and advanced arguments, J. Differential Equations 44 (1982), 134-152.
- [19] G. Ladas, V. Lakshmikantham, L.S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded arguments, Delay and Functional Differential Equations and their Applications, Academic Press, New York, 1972, 219-231.
- [20] G.S. Ladde, Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Acad. Naz. Lincei Rendiconti 63 (1978), 35f-359.
- [21] G.S. Ladde, V. Lakshmikantham, B.G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. lfO, Marcel Dekker, Inc., New York, 1987.
- [22] X. Li, D. Zhu, Oscillation and nonosdilation of advanced differential equations with variable coefficients, J. Math. Anal. Appl. 269 (2002), 462-488.
- [23] H.A. El-Morshedy, E.R. Attia, New oscillation criterion for delay differential equations with non-monotone arguments, Appl. Math. Lett. 54 (2016), 54-59.
- [24] A.D. Myshkis, Lineare Differentialgleichungen mit nacheilendem Argument, Deutscher Verlag. Wiss. Berlin, 1955, Translation of the f95f Russian edition.
- [25] A.D. Myshkis, Linear homogeneous differential equations of first order with deviating arguments, Uspekhi Mat. Nauk 5 (1950), 160-162 [in Russian].
- [26] I.P. Stavroulakis, Oscillation criteria for delay and difference equations with non-monotone arguments, Appl. Math. Comput. 226 (2014), 661-672.
- [27] J.S. Yu, Z.C. Wang, B.G. Zhang, X.Z. Qian, Oscillations of differential equations with deviating arguments, Panamer. Math. J. 2 (1992) 2, 59-78.
- [28] B.G. Zhang, Oscillation of solutions of the first-order advanced type differential equations, Science Exploration 2 (1982), 79-82.
- [29] D. Zhou, On some problems on oscillation of functional differential equations of first order, J. Shandong University 25 (1990), 434-442.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e902563-b38b-4702-8310-d8c48f691d4a