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Abstract. In this paper, improved oscillation conditions are established for the oscillation of
all solutions of differential equations with non-monotone deviating arguments and nonnegative
coefficients. They lead to a procedure that checks for oscillations by iteratively computing
lim sup and lim inf on terms recursively defined on the equation’s coefficients and deviating
argument. This procedure significantly improves all known oscillation criteria. The results and
the improvement achieved over the other known conditions are illustrated by two examples,
numerically solved in MATLAB.
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1. INTRODUCTION

Consider the differential equation with a variable deviating argument of either delay

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0, (E)

or advanced type
x′(t)− q(t)x (σ(t)) = 0, t ≥ t0, (E′)

where p, q are functions of nonnegative real numbers, and τ , σ are functions of positive
real numbers such that

τ(t) < t, t ≥ t0 and lim
t→∞

τ(t) =∞ (1.1)

and
σ(t) > t, t ≥ t0, (1.2)

respectively.
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As is customary, a solution of (E) or (E′) is called oscillatory, if it is neither
eventually positive nor eventually negative. If there exists an eventually positive
or an eventually negative solution, the equation is nonoscillatory. An equation is
oscillatory if all its solutions oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions
of equations (E) and (E′) has been the subject of many investigations. The reader is
referred to [1–7, 9–20, 22–29] and the references cited therein. Most of these papers
concern the special case where the arguments are nondecreasing. A few papers studied
the general case where the arguments are not necessarily monotone, see, for example,
[1–6,14,23,26] and the references therein.

The motivation for considering equations in the form of (E) or (E′) with
non-monotone arguments is justified not only by its pure mathematical interest,
but also because such equations describe in a more realistic way a wide class of natural
phenomena as natural disturbances (e.g. noise in communication systems) affecting
parameters of the equation cause non-monotone deviations in the argument of the
solutions. Therefore, an interesting question arises whether is it possible to obtain
new oscillation criteria in the case where the argument τ(t) or σ(t) is not necessarily
monotone. In the present work, we achieve this goal by establishing criteria which, up
to our knowledge, essentially improve all other known results in the literature.

The paper is organized as follows. First, we present, separately for a delay and
advanced case, some of the related results which motivate the contents of this paper.
Next, we establish new sufficient conditions of lim sup and lim inf type, for the oscil-
lation of all solutions of (E) and (E′). We base our technique on the proper use of
a recursive procedure leading to new inequalities which may replace former ones. To
verify the significance of the obtained results, we provide two examples along with
various comparisons among new and known criteria.

Throughout, we are going to use the following notation:

α := lim inf
t→∞

t∫

τ(t)

p(s)ds,

β := lim inf
t→∞

σ(t)∫

t

q(s)ds,

D(ω) :=





0, if ω > 1/e,
1− ω −

√
1− 2ω − ω2

2 , if ω ∈ [0, 1/e] ,

LD := lim sup
t→∞

t∫

τ(t)

p(s)ds, where τ(t) is nondecreasing,
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and

LA := lim sup
t→∞

σ(t)∫

t

q(s)ds, where σ(t) is nondecreasing.

1.1. DELAY DIFFERENTIAL EQUATIONS (CHRONOLOGICAL REVIEW)

The first systematic study for the oscillation of all solutions to equation (E) was made
by Myshkis in 1950 [25] when he proved that every solution of (E) oscillates if

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) > 1
e
. (1.3)

In 1972, Ladas, Lakshmikantham and Papadakis [19] proved that, if

LD > 1, (1.4)

then all solutions of (E) oscillate.
In 1982, Koplatadze and Chanturija [13] improved (1.3) to

α >
1
e
. (1.5)

Concerning the constant 1/e in (1.5), it is to be pointed out that if the inequality
t∫

τ(t)

p(s)ds ≤ 1
e

holds eventually, then, according to a result in [13], (E) has a nonoscillatory solution.
Obviously, when the limit

lim
t→∞

t∫

τ(t)

p(s)ds

does not exist, a gap appears between the conditions (1.4) and (1.5). How to fill this
gap is an interesting problem which has attracted the attention of several authors.
For example, in 2000, Jaroš and Stavroulakis [10] proved that, if

LD >
1 + lnλ0

λ0
−D(α), (1.6)

where λ0 is the smaller root of the transcendental equation λ = eαλ, then all solutions
of (E) oscillate.

Now we come to the case considered in the present work, i.e., that the argument
τ(t) is not necessarily monotone. Set

h(t) := sup
s≤t

τ(s), t ≥ t0. (1.7)

Clearly, the function h(t) is nondecreasing and τ(t) ≤ h(t) < t for all t ≥ t0.
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Essential progress was made by Koplatadze and Kvinikadze [14] in 1994 who proved
that if

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

h(s)

p(u)ψj(u)du


 ds > 1−D(α), (1.8)

where

ψ1(t) = 0, ψj(t) = exp




t∫

τ(t)

p(u)ψj−1(u)du


 , j ≥ 2,

then all solutions of (E) oscillate.
In 2011, Braverman and Karpuz [2] proved that if

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u)du


 ds > 1, (1.9)

then all solutions of (E) oscillate, while Stavroulakis [26] in 2014 improved (1.9) to

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u)du


 ds > 1−D(α). (1.10)

In 2016, Morshedy and Attia [23] proved that, if

lim sup
t→∞




t∫

g(t)

pn(s)ds+D(α) exp




t∫

g(t)

n−1∑

j=0
pj(s)ds





 > 1, (1.11)

where

p0(t) = p(t) and pn(t) = pn−1(t)
t∫

g(t)

pn−1(s) exp




t∫

g(s)

pn−1(u)du


 ds, n ≥ 1,

then all solutions of (E) oscillate. Here, g(t) is a nondecreasing continuous function
such that τ(t) ≤ g(t) ≤ t, t1 ≥ t0. Clearly, g(t) is more general than h(t) defined
by (1.7).

In 2016 (2017), Chatzarakis [3] ([4]) proved that if for some j ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

pj(u)du


 ds > 1 (1.12)
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or

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

pj(u)du


 ds > 1−D(α), (1.13)

where

pj(t) = p(t)


1 +

t∫

τ(t)

p(s) exp




h(t)∫

τ(s)

pj−1(u)du


 ds


 ,

with p0(t) = p(t), then all solutions of (E) oscillate.
Lately, Chatzarakis and Li [5] improved (1.12) and (1.13) to

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

Pj(ξ)dξ


 du


 ds > 1, (1.14)

and

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

Pj(ξ)dξ


 du


 ds > 1−D(α), (1.15)

respectively, where

Pj(t) = p(t)


1 +

t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

Pj−1(ξ)dξ


 du


 ds


 ,

with P0(t) = λ0p(t) and λ0 is the smaller root of the transcendental equation λ = eαλ.
In the same paper, the authors proved that if for some j ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

Pj(ξ)dξ


 du


 ds >

1
D(α) , (1.16)

or

lim sup
t→∞

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

Pj(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(α),

(1.17)
or

lim inf
t→∞

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

Pj(ξ)dξ


 du


 ds >

1
e
, (1.18)

then all solutions of (E) oscillate.



332 George E. Chatzarakis and Irena Jadlovská

1.2. ADVANCED DIFFERENTIAL EQUATIONS (CHRONOLOGICAL REVIEW)

By [21, Theorem 2.4.3], if
LA > 1, (1.19)

then all solutions of (E′) oscillate.
In 1983, Fukagai and Kusano [9], proved that if

β >
1
e
, (1.20)

then all solutions of (E′) oscillate, while if

σ(t)∫

t

q(s)ds ≤ 1
e

for all sufficiently large t,

then Eq. (E′) has a nonoscillatory solution.
Assume that the argument σ(t) is not necessarily monotone. Set

ρ(t) = inf
s≥t

σ(s), t ≥ t0. (1.21)

Clearly, the function ρ(t) is nondecreasing and σ(t) ≥ ρ(t) > t for all t ≥ t0.
In 2015, Chatzarakis and Ocalan [6], proved that if

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u)du


 ds > 1, (1.22)

or

lim inf
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u)du


 ds >

1
e
, (1.23)

then all solutions of (E′) oscillate.
In 2016 (2017), Chatzarakis [3] ([4]) proved that, if for some j ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

qj(u)du


 ds > 1, (1.24)

or

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

qj(u)du


 ds > 1−D(β), (1.25)

where

qj(t) = q(t)


1 +

σ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

qj−1(u)du


 ds


 , j ≥ 1

with q0(t) = q(t), then all solutions of (E′) oscillate.



Improved iterative oscillation tests for first-order deviating differential equations 333

Lately, Chatzarakis and Li [5], improved (1.24) and (1.25) to

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

Qj(ξ)dξ


 du


 ds > 1 (1.26)

and

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

Qj(ξ)dξ


 du


 ds > 1−D(β), (1.27)

respectively, where

Qj(t) = q(t)


1 +

σ(t)∫

t

q(s) exp




σ(s)∫

t

q(u) exp




σ(u)∫

u

Pj−1(ξ)dξ


 du


 ds


 ,

with Q0(t) = λ0q(t) and λ0 is the smaller root of the transcendental equation λ = eβλ.
In the same paper, the authors proved that, if for some j ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

t

q(u) exp




σ(u)∫

u

Qj(ξ)dξ


 du


 ds >

1
D(β) , (1.28)

or

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(s)

q(u) exp




σ(u)∫

u

Qj(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(β),

(1.29)
or

lim inf
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(s)

q(u) exp




σ(u)∫

u

Qj(ξ)dξ


 du


 ds >

1
e
, (1.30)

then all solutions of (E′) are oscillatory.

2. MAIN RESULTS

2.1. DELAY DIFFERENTIAL EQUATIONS

We further study (E) and derive new sufficient oscillation conditions, involving lim sup
and lim inf, which improve all the previous results. The proofs of our main results are
essentially based on the following lemmas.
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Lemma 2.1 ([8, Lemma 2.1.1]). In addition to hypothesis (1.1), assume that h(t) is
defined by (1.7). Then

α := lim inf
t→∞

t∫

τ(t)

p(s)ds = lim inf
t→∞

t∫

h(t)

p(s)ds. (2.1)

Lemma 2.2 ([8, Lemma 2.1.3]). In addition to hypothesis (1.1), assume that h(t) is
defined by (1.7), α ∈ (0, 1/e] and x(t) is an eventually positive solution of (E). Then

lim inf
t→∞

x(t)
x(h(t)) ≥ D(α). (2.2)

The next lemma provides a lower estimate for the ratio x(h(t))/x(t) in terms of
the smaller root of the transcendental equation λ = eαλ.
Lemma 2.3 ([17, Lemma 1]). Assume that α ∈ (0, 1/e] and let x be a positive solution
of (E). Then

lim inf
t→∞

x(h(t))
x(t) ≥ λ0, (2.3)

where λ0 is the smaller root of the transcendental equation λ = eαλ.
Theorem 2.4. Assume that h(t) is defined by (1.7) and for some ` ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds > 1, (2.4)

where

R`(t) = p(t)


1 +

t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`−1(ξ)dξ


 du


 ds


 (2.5)

with R0(t) = p(t)
[
1 + λ0

t∫
τ(t)

p(s)ds
]
, and λ0 is the smaller root of the transcendental

equation λ = eαλ. Then all solutions of (E) are oscillatory.
Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion only
to the case where the solution x(t) is eventually positive. Then there exists t1 > t0
such that x(t), x (τ(t)) > 0, for all t ≥ t1. Thus, from (E) we have

x′(t) = −p(t)x (τ(t)) ≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing positive function. Taking this
into account and the fact τ(t) ≤ h(t), (E) implies

x′(t) + p(t)x(h(t)) ≤ 0, t ≥ t1. (2.6)
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Observe that (2.3) implies that for each ε > 0 there exists a tε such that

x(h(t))
x(t) > λ0 − ε for all t ≥ tε ≥ t1. (2.7)

Integrating (E) from τ(t) to t, we have

x(t)− x(τ(t)) +
t∫

τ(t)

p(s)x (τ(s)) ds = 0, (2.8)

which, in view of τ(s) ≤ h(s), gives

x(t)− x(τ(t)) +
t∫

τ(t)

p(s)x (h(s)) ds ≤ 0. (2.9)

Combining (2.9) and (2.7), we obtain

x(t)− x(τ(t)) + (λ0 − ε)
t∫

τ(t)

p(s)x(s)ds ≤ 0,

or

x(t)− x(τ(t)) + (λ0 − ε)x(t)
t∫

τ(t)

p(s)ds ≤ 0. (2.10)

Multiplying the last inequality by p(t), we find

p(t)x(t)− p(t)x(τ(t)) + (λ0 − ε) p(t)x(t)
t∫

τ(t)

p(s)ds ≤ 0,

which, in view of (E), becomes

x′(t) + p(t)x(t) + (λ0 − ε) p(t)x(t)
t∫

τ(t)

p(s)ds ≤ 0,

or

x′(t) + p(t)


1 + (λ0 − ε)

t∫

τ(t)

p(s)ds


x(t) ≤ 0.

Thus,
x′(t) +R0(t, ε)x(t) ≤ 0, (2.11)
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where

R0(t, ε) = p(t)


1 + (λ0 − ε)

t∫

τ(t)

p(s)ds


 .

Applying the Grönwall inequality in (2.11), we obtain

x(s) ≥ x(t) exp




t∫

s

R0(ξ, ε)dξ


 , t ≥ s. (2.12)

Now we divide (E) by x (t) > 0 and integrate on [s, t], so

−
t∫

s

x′(u)
x(u) du =

t∫

s

p(u)x (τ(u))
x(u) du,

or

ln x(s)
x(t) =

t∫

s

p(u)x (τ(u))
x(u) du. (2.13)

Since τ(u) < u, the last inequality gives

ln x(s)
x(t) =

t∫

s

p(u)x (τ(u))
x(u) du

≥
t∫

s

p(u)x(u)
x(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du =

t∫

s

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du

or

x(s) ≥ x(t) exp




t∫

s

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 . (2.14)

Setting s = τ(s) in (2.14), we take

x(τ(s)) ≥ x(t) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 . (2.15)

Combining (2.8) and (2.15), we obtain

x(t)− x(τ(t)) + x(t)
t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 ds ≤ 0.
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Multiplying the last inequality by p(t), we find

p(t)x(t)−p(t)x(τ(t))+p(t)x(t)
t∫

τ(t)

p(s) exp
( t∫

τ(s)

p(u) exp
( u∫

τ(u)

R0(ξ, ε)dξ
)
du

)
ds ≤ 0,

which, in view of (E), becomes

x′(t) + p(t)x(t) + p(t)x(t)
t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 ds ≤ 0.

Hence, for sufficiently large t,

x′(t) + p(t)


1 +

t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 ds


x(t) ≤ 0,

or
x′(t) +R1(t, ε)x(t) ≤ 0, (2.16)

where

R1(t, ε) = p(t)


1 +

t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R0(ξ, ε)dξ


 du


 ds


 .

Clearly (2.16) resembles (2.11) with R0 replaced by R1, so an integration of (2.16)
on [s, t] leads to

x(s) ≥ x(t) exp




t∫

s

R1(ξ, ε)dξ


 . (2.17)

Taking the steps starting from (2.12) to (2.15) we may see that x satisfies the inequality

x(τ(s)) ≥ x(t) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R1(ξ, ε)dξ


 du


 . (2.18)

Combining now (2.8) and (2.18), we obtain

x(t)− x(τ(t)) + x(t)
t∫

τ(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R1(ξ, ε)dξ


 du


 ds ≤ 0.
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Multiplying the last inequality by p(t), as before, we find

x′(t) + p(t)
[

1 +
t∫

τ(t)

p(s) exp
( t∫

τ(s)

p(u) exp
( u∫

τ(u)

R1(ξ, ε)dξ
)
du

)
ds

]
x(t) ≤ 0.

Therefore, for sufficiently large t, we have

x′(t) +R2(t, ε)x(t) ≤ 0,

where

R2(t, ε) = p(t)
[

1 +
t∫

τ(t)

p(s) exp
( t∫

τ(s)

p(u) exp
( u∫

τ(u)

R1(ξ, ε)dξ
)
du

)
ds

]
.

It becomes apparent, now, that by repeating the above steps, we can build inequalities
on x′(t) with progressively higher indices R`(t), ` ∈ N. In general, for sufficiently
large t, the positive solution x(t) satisfies the inequality

x′(t) +R`(t, ε)x(t) ≤ 0, ` ∈ N, (2.19)

where

R`(t, ε) = p(t)
[

1 +
t∫

τ(t)

p(s) exp
( t∫

τ(s)

p(u) exp
( u∫

τ(u)

R`−1(ξ, ε)dξ
)
du

)
ds

]
.

In order to take our final step, we recall that

h (t) := sup
s≤t

τ (t)

and note that h is a nondecreasing function. Moreover, since τ (s) ≤ h(s) ≤ h (t)
we have

x(τ(s)) ≥ x(h(t)) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
.

Hence

x(t)− x(h(t)) + x(h(t))
t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds ≤ 0.

(2.20)
The inequality is valid if we omit x(t) > 0 in the left-hand side. Therefore

x(h(t))
[ t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds− 1

]
< 0,
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which means that

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.4).
The proof of the theorem is complete.

Theorem 2.5. Assume that h(t) is defined by (1.7) and α ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ)dξ
)
du

)
ds > 1−D(α), (2.21)

where R` is defined by (2.5), then all solutions of (E) are oscillatory.

Proof. Let x be an eventually positive solution of (E). Then, as in the proof of
Theorem 2.4, we obtain (2.20), i.e, for sufficiently large t we have

x(t)− x(h(t)) + x(h(t))
t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds ≤ 0.

Thus,

t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds ≤ 1− x(t)

x(h(t)) ,

which gives

lim sup
t→∞

t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds ≤ 1− lim inf

t→∞
x(t)

x(h(t)) .

(2.22)
By combining Lemmas 2.1 and 2.2, it becomes obvious that inequality (2.2) is fulfilled.
So, (2.22) leads to

lim sup
t→∞

t∫

h(t)

p(s) exp
( h(t)∫

τ(s)

p(u) exp
( u∫

τ(u)

R`(ξ, ε)dξ
)
du

)
ds ≤ 1−D(α).

Since ε may be taken arbitrarily small, this inequality contradicts (2.21).
The proof of the theorem is complete.
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Remark 2.6. It is clear that the left-hand sides of both conditions (2.4) and (2.21)
are identical, also the right-hand side of condition (2.21) reduces to (2.4) in case that
α = 0. So it seems that Theorem 2.5 is the same as Theorem 2.4 when α = 0. However,
one may notice that condition α ∈ (0, 1/e] is required in Theorem 2.5 but not in
Theorem 2.4.

Theorem 2.7. Assume that h(t) is defined by (1.7) and α ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds >

1
D(α) − 1, (2.23)

where R` is defined by (2.5), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x of (E) and that x is eventually positive. Then, as in the proof of Theorem 2.4, for
sufficiently large t we have

x(τ(s)) ≥ x(t) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 . (2.24)

Integrating (E) from h(t) to t, we have

x(t)− x(h(t)) +
t∫

h(t)

p(s)x(τ(s))ds = 0,

which, in view of (2.24), gives

x(t)− x(h(t)) +
t∫

h(t)

p(s)x(t) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ 0,

or

x(t)−x(h(t))+x(h(t))
t∫

h(t)

p(s) x(t)
x(h(t)) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ 0.

That is, for all sufficiently large t it holds

t∫

h(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ x(h(t))

x(t) − 1
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and therefore

lim sup
t→∞

t∫

h(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ lim sup

t→∞

x(h(t))
x(t) − 1.

(2.25)
By combining Lemmas 2.1 and 2.2, it becomes obvious that inequality (2.2) is fulfilled.
So, (2.25) leads to

lim sup
t→∞

t∫

h(t)

p(s) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ 1

D(α) − 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.23).
The proof of the theorem is complete.

Theorem 2.8. Assume that h(t) is defined by (1.7) and α ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(α),

(2.26)
where R` is defined by (2.5) and λ0 is the smaller root of the transcendental equation
λ = eαλ, then all solutions of (E) are oscillatory.
Proof. Let x be an eventually positive solution and obtain (2.24) as in Theorem 2.7,
i.e.,

x(τ(s)) ≥ x(t) exp




t∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 .

Since τ(s) ≤ h(s), the above inequality gives

x(τ(s)) ≥ x(h(s)) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 . (2.27)

Observe that (2.3) implies that for each ε > 0 there exists a tε such that

x(h(t))
x(t) > λ0 − ε for all t ≥ tε ≥ t1. (2.28)

Noting that by nondecreasing nature of the function x(h(t))
x(s) in s, it holds

1 = x(h(t))
x(h(t)) ≤

x(h(t))
x(s) ≤ x(h(t))

x(t) , tε ≤ h(t) ≤ s ≤ t,
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in particular for ε ∈ (0, λ0 − 1), by continuity we see that there exists a t∗ ∈ (h(t), t]
such that

1 < λ0 − ε = x(h(t))
x(t∗) . (2.29)

Integrating (E) from t∗ to t we have

x(t)− x(t∗) +
t∫

t∗

p(s)x(τ(s))ds = 0,

so, by using (2.27) along with h(s) ≤ h(t) in combination with the the fact that x is
nonincreasing, we have

x(t)− x(t∗) + x(h(t))
t∫

t∗

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ 0,

or
t∫

t∗

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ x(t∗)

x(h(t)) −
x(t)

x(h(t)) .

In view of (2.29) and Lemma 2.2, for the ε considered, there exists t′ε ≥ tε such that

t∫

t∗

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds <

1
λ0 − ε

−D(α) + ε, (2.30)

for t ≥ t′ε.
Dividing (E) by x(t) and integrating from h(t) to t∗ we find

t∗∫

h(t)

p(s)x(τ(s))
x(s) ds = −

t∗∫

h(t)

x′(s)
x(s) ds

and using (2.27), we find

t∗∫

h(t)

p(s)x(h(s))
x(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≤ −

t∗∫

h(t)

x′(s)
x(s) ds.

(2.31)
By (2.3), for s ≥ h(t) ≥ t′ε, we have x(h(s))

x(s) > λ0 − ε, so from (2.31) we get

(λ0 − ε)
t∗∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds < −

t∗∫

h(t)

x′(s)
x(s) ds .
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Hence, for all sufficiently large t we have
t∗∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds

< − 1
λ0 − ε

t∗∫

h(t)

x′(s)
x(s) ds = 1

λ0 − ε
ln x(h(t))

x(t∗) = ln (λ0 − ε)
λ0 − ε

,

i.e.,
t∗∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds <

ln (λ0 − ε)
λ0 − ε

. (2.32)

Adding (2.30) and (2.32), and then taking the limit as t→∞, we have

lim sup
t→∞

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds

≤ 1 + ln(λ0 − ε)
λ0 − ε

−D(α) + ε.

Since ε may be taken arbitrarily small, this inequality contradicts (2.26).
The proof of the theorem is complete.

Theorem 2.9. Assume that for some ` ∈ N

lim inf
t→∞

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds >

1
e
, (2.33)

where R` is defined by (2.5). Then all solutions of (E) are oscillatory.
Proof. For the sake of contradiction, let x be a nonincreasing eventually positive
solution and t1 > t0 be such that x(t) > 0 and x (τ(t)) > 0 for all t ≥ t1. We note that
we may obtain (2.27) as in previous theorem.

Dividing (E) by x(t) and integrating from h(t) to t, we have

ln
(
x(h(t))
x(t)

)
=

t∫

h(t)

p(s)x (τ(s))
x(s) ds for all t ≥ t2 ≥ t1,

from which in view of τ(s) ≤ h(s) and by (2.27), we obtain

ln
(
x(h(t))
x(t)

)
≥

t∫

h(t)

p(s)x(h(s))
x(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds.



344 George E. Chatzarakis and Irena Jadlovská

Taking into account that x is nonincreasing and h(s) < s, the last inequality leads to

ln
(
x(h(t))
x(t)

)
≥

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds. (2.34)

From (2.33), it follows that there exists a constant c > 0 such that for a sufficiently
large t holds

t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds ≥ c > 1

e
.

Choose c′ such that c > c′ > 1/e. For every ε > 0 such that c− ε > c′ we have
t∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≥ c− ε > c′ >

1
e
. (2.35)

Combining inequalities (2.34) and (2.35), we obtain

ln
(
x(h(t))
x(t)

)
≥ c′,

or
x(h(t))
x(t) ≥ ec′ ≥ ec′ > 1,

which implies
x(h(t)) ≥ (ec′)x(t).

Repeating the above procedure, it follows by induction that for any positive integer k,
x(h(t))
x(t) ≥ (ec′)k, for sufficiently large t.

Since ec′ > 1, there is k ∈ N satisfying k > 2[ln 2−ln c′]
1+ln c′ such that for t sufficiently large

x(h(t))
x(t) ≥ (ec′)k >

(
2
c′

)2
. (2.36)

Further (cf. [17, 1]), for sufficiently large t, there exists a tm ∈ (h(t), t) such that
tm∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≥ c′

2 ,

t∫

tm

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds ≥ c′

2 .

(2.37)
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Integrating (E) from h(t) to tm, using (2.27) and the fact that x(t) > 0, we obtain

x(h(t)) > x(h(tm))
tm∫

h(t)

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds,

which, in view of the first inequality in (2.37), implies that

x(h(t)) > c′

2 x(h(tm)). (2.38)

Similarly, integrating (E) from tm to t, using (2.27) and the fact that x(t) > 0, we have

x(tm) > x(h(t))
t∫

tm

p(s) exp




h(s)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ, ε)dξ


 du


 ds,

which, in view of the second inequality in (2.37), implies that

x(tm) > c′

2 x(h(t)). (2.39)

Combining the inequalities (2.38) and (2.39), we obtain

x(h(tm)) < 2
c′
x(h(t)) <

(
2
c′

)2
x(tm),

which contradicts (2.36).
The proof of the theorem is complete.

2.2. ADVANCED DIFFERENTIAL EQUATIONS

Oscillation conditions analogous to those obtained for the delay equation (E) can
be derived for the (dual) advanced differential equation (E′) by following similar
arguments with the ones employed for obtaining Theorems 2.4−2.9. The corresponding
theorems are stated below while their proofs are omitted, as they are quite similar to
those for Theorems 2.4−2.9.
Theorem 2.10. Assume that ρ(t) is defined by (1.21) and for some ` ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds > 1, (2.40)

where

G`(t) = q(t)


1 +

σ(t)∫

t

q(s) exp




σ(s)∫

t

q(u) exp




σ(u)∫

u

G`−1(ξ)dξ


 du


 ds


 (2.41)
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with

G0(t) = q(t)
[

1 + λ0

σ(t)∫

t

q(s)ds
]
,

and λ0 is the smaller root of the transcendental equation λ = eβλ. Then all solutions
of (E′) are oscillatory.

Theorem 2.11. Assume that ρ(t) is defined by (1.21) and β ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds > 1−D (β) , (2.42)

where G` is defined by (2.41), then all solutions of (E′) are oscillatory.

Theorem 2.12. Assume that ρ(t) is defined by (1.21) and β ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

t

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds >

1
D(β) − 1, (2.43)

where G` is defined by (2.41), then all solutions of (E′) are oscillatory.

Theorem 2.13. Assume that ρ(t) is defined by (1.21) and β ∈ (0, 1/e]. If for some
` ∈ N

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(s)

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(β),

(2.44)
where G` is defined by (2.41) and λ0 is the smaller root of the transcendental equation
λ = eβλ, then all solutions of (E′) are oscillatory.

Theorem 2.14. Assume that ρ(t) is defined by (1.21). If for some ` ∈ N

lim inf
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(s)

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds >

1
e
, (2.45)

where G` is defined by (2.41), then all solutions of (E′) are oscillatory.
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2.3. DIFFERENTIAL INEQUALITIES

A slight modification in the proofs of Theorems 2.4–2.14 leads to the following results
about differential inequalities.
Theorem 2.15. Assume that all the conditions of Theorem 2.4 [2.10] or 2.5 [2.11]
or 2.7 [2.12] or 2.8 [2.13] or 2.9 [2.14] hold. Then
(i) the delay [advanced] differential inequality

x′(t) + p(t)x (τ(t)) ≤ 0 [x′(t)− q(t)x (σ(t)) ≥ 0], t ≥ t0,

has no eventually positive solutions;
(ii) the delay [advanced] differential inequality

x′(t) + p(t)x (τ(t)) ≥ 0 [x′(t)− q(t)x (σ(t)) ≤ 0], t ≥ t0,

has no eventually negative solutions.

3. EXAMPLES AND COMMENTS

The examples below illustrate the significancy of our results and indicate high level
of improvement in the oscillation criteria. The calculations were made by the use of
MATLAB software.
Example 3.1 (taken and adapted from [5]). Consider the delay differential equation

x′(t) + 117
1000x(τ(t)) = 0, t ≥ 0, (3.1)

with (see Figure 1 (a))

τ(t) =





t− 1, if t ∈ [8k, 8k + 2],
−4t+ 40k + 9, if t ∈ [8k + 2, 8k + 3],
5t− 32k − 18, if t ∈ [8k + 3, 8k + 4],
−4t+ 40k + 18, if t ∈ [8k + 4, 8k + 5],
5t− 32k − 27, if t ∈ [8k + 5, 8k + 6],
−2t+ 24k + 15, if t ∈ [8k + 6, 8k + 7],
6t− 40k − 41, if t ∈ [8k + 7, 8k + 8],

where k ∈ N0 and N0 is the set of nonnegative integers.
By (1.7), we see (Figure 1 (b)) that

h(t) =





t− 1, if t ∈ [8k, 8k + 2],
8k + 1, if t ∈ [8k + 2, 8k + 19/5],
5t− 32k − 18, if t ∈ [8k + 19/5, 8k + 4],
8k + 2, if t ∈ [8k + 4, 8k + 29/5],
5t− 32k − 27, if t ∈ [8k + 29/5, 8k + 6],
8k + 3, if t ∈ [8k + 6, 8k + 44/6],
6t− 40k − 41, if t ∈ [8k + 44/6, 8k + 8].
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It is easy to see that

α = lim inf
t→∞

t∫

τ(t)

p(s)ds = lim inf
k→∞

8k+2∫

8k+1

117
1000ds = 0.117

and therefore, the smaller root of e0.117λ = λ is λ0 = 1.1431.
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Fig. 1. The graphs of τ(t) and h(t)

Observe that the function F` : R0 → R+ defined as

F`(t) =
t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

R`(ξ)dξ


 du


 ds

attains its maximum at t = 8k + 44/6, k ∈ N0, for every ` ∈ N. Specifically

F1(t = 8k + 44/6) =
8k+44/6∫

8k+3

p(s) exp




8k+3∫

τ(s)

p(u) exp




u∫

τ(u)

R1(ξ)dξ


 du


 ds,

with

R1(ξ) = p(ξ)


1 +

ξ∫

τ(ξ)

p(v) exp




ξ∫

τ(v)

p(w) exp




w∫

τ(w)

R0(z)dz


 dw


 dv




and

R0(z) = p(z)
[

1 + λ0

z∫

τ(z)

p(ω)dω
]
.
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By using an algorithm on MATLAB software, we obtain
F1(t = 8k + 44/6) ' 1.012

and therefore
lim sup
t→∞

F1(t) ' 1.012 > 1.

That is, condition (2.4) of Theorem 2.4 is satisfied for ` = 1, and therefore all solutions
of (3.1) are oscillatory.

Observe, however, that

LD = lim sup
t→∞

t∫

h(t)

p(s)ds = lim sup
k→∞

8k+44/6∫

8k+3

117
1000ds = 0.507 < 1, α = 0.117 < 1

e

and
0.507 < 1 + lnλ0

λ0
−D(α) ' 0.984.

Noting that the function Φj defined by

Φj(t) =
t∫

h(t)

p(s) exp
( h(t)∫

h(s)

p(u)ψj(u)du
)
ds, (j ≥ 2),

attains its maximum at t = 8k + 44/6, k ∈ N0 for every j ≥ 2. Specifically,
Φ2(t = 8k + 44/6)

=
8k+44/6∫

8k+3

p(s) exp
( 8k+3∫

h(s)

p(u)ψ2(u)du
)
ds

=
8k+44/6∫

8k+3

117
1000 exp

( 8k+3∫

h(s)

117
1000 exp

( u∫

τ(u)

117
1000 · 0dw

)
du

)
ds

=
8k+44/6∫

8k+3

117
1000 exp

( 8k+3∫

h(s)

117
1000 · 1du

)
ds

= 117
1000 ·

[ 8k+19/5∫

8k+3

exp
(

117
1000

8k+3∫

8k+1

du

)
ds+

8k+4∫

8k+19/5

exp
(

117
1000

8k+3∫

5s−32k−18

du

)
ds

+
8k+29/5∫

8k+4

exp
(

117
1000

8k+3∫

8k+2

du

)
ds+

8k+6∫

8k+29/5

exp
(

117
1000

8k+3∫

5s−32k−27

du

)
ds

+
8k+44/6∫

8k+6

exp
(

117
1000

8k+3∫

8k+3

du

)
ds

]
' 0.5637.
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Thus
lim sup
t→∞

Φ2(t) ' 0.5637 < 1−D(α) ' 0.9922.

Also

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u)du


 ds

= lim sup
k→∞

8k+44/6∫

8k+3

117
1000 exp




8k+3∫

τ(s)

117
1000du


 ds

= 117
1000 · lim sup

k→∞

[ 8k+4∫

8k+3

exp


 117

1000

8k+3∫

5s−32k−18

du


 ds

+
8k+5∫

8k+4

exp


 117

1000

8k+3∫

−4s+40k+18

du


 ds

+
8k+6∫

8k+5

exp


 117

1000

8k+3∫

5s−32k−27

du


 ds

+
8k+7∫

8k+6

exp


 117

1000

8k+3∫

−2s+24k+15

du


 ds

+
8k+44/6∫

8k+7

exp


 117

1000

8k+3∫

6s−40k−41

du


 ds

]
' 0.6812 < 1,

and
0.6812 < 1−D(α) ' 0.9922.

Finally, by using algorithms on MATLAB software, we obtain

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p1(u)du


 ds ' 0.7724 < 1,

0.7724 < 1−D(α) ' 0.9922,

lim sup
t→∞

t∫

h(t)

p(s) exp




h(t)∫

τ(s)

p(u) exp




u∫

τ(u)

P1(ξ)dξ


 du


 ds ' 0.9518 < 1,
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and
0.9518 < 1−D(α) ' 0.9922.

That is, none of the conditions (1.4)−(1.6), (1.8) (for j = 2), (1.9)−(1.10),
(1.12)−(1.13) (for j = 1) and (1.14)−(1.15) (for j = 1) is satisfied.

It is worth noting that the improvement of condition (2.4) to the corresponding
condition (1.4) is significant, approximately 99.6%, if we compare the values on the
left-side of these conditions. Also, the improvement compared to conditions (1.8),
(1.9), (1.12) and (1.14) is very satisfactory, around 79.53%, 48.56%, 31.02% and 6.32%,
respectively. In addition, observe that conditions (1.8), (1.12) and (1.14) do not lead
to oscillation for first iteration. On the contrary, condition (2.4) is satisfied from the
first iteration. This means that our condition is better and much faster than (1.8),
(1.12) and (1.14).

Example 3.2. Consider the advanced differential equation

x′(t)− 1
8x(σ(t)) = 0, t ≥ 0, (3.2)

with (see Figure 2 (a))

σ(t) =





6t− 35k − 4, if t ∈ [7k + 1, 7k + 2] ,
−2t+ 21k + 12, if t ∈ [7k + 2, 7k + 3] ,
5t− 28k − 9, if t ∈ [7k + 3, 7k + 4] ,
−3t+ 28k + 23, if t ∈ [7k + 4, 7k + 5] ,
7k + 8, if t ∈ [7k + 5, 7k + 6] ,
t+ 2, if t ∈ [7k + 6, 7k + 7] ,
7k + 9, if t ∈ [7k + 7, 7k + 8] ,

where k ∈ N0 and N0 is the set of nonnegative integers.
By (1.21), we see (Figure 2 (b)) that

ρ(t) =





6t− 35k − 4, if t ∈ [7k + 1, 7k + 5/3] ,
7k + 6, if t ∈ [7k + 5/3, 7k + 3] ,
5t− 28k − 9, if t ∈ [7k + 3, 7k + 17/5] ,
7k + 8, if t ∈ [7k + 17/5, 7k + 6] ,
t+ 2, if t ∈ [7k + 6, 7k + 7] ,
7k + 9, if t ∈ [7k + 7, 7k + 8] .

It is easy to see that

β = lim inf
t→∞

t∫

τ(t)

p(s)ds = lim inf
k→∞

7k+2∫

7k+1

1
8ds = 0.125

and therefore, the smaller solution of e0.125λ = λ is λ0 = 1.15537.
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Fig. 2. The graphs of σ(t) and ρ(t)

Observe that the function F` : R0 → R+ defined as

F`(t) =
ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

G`(ξ)dξ


 du


 ds

attains its mamimum at t = 7k + 17/5, k ∈ N0, for every ` ∈ N. Specifically,

F1(t = 7k + 17/5) =
7k+8∫

7k+17/5

q(s) exp




σ(s)∫

7k+8

q(u) exp




σ(u)∫

u

G1(ξ)dξ


 du


 ds,

with

G1(ξ) = q(ξ)


1 +

σ(ξ)∫

ξ

q(v) exp




σ(v)∫

ξ

q(w) exp




σ(w)∫

w

G0(z)dz


 dw


 dv




and

G0(z) = q(z)


1 + λ0

σ(z)∫

z

q(ω)dω


 .

By using an algorithm on MATLAB software, we obtain

F1(t = 7k + 17/5) ' 1.03233

and therefore
lim sup
t→∞

F1(t) ' 1.03233 > 1.
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That is, condition (2.40) of Theorem 2.10 is satisfied for ` = 1, and therefore all
solutions of (3.2) are oscillatory.

Observe, however, that

LA = lim sup
t→∞

ρ(t)∫

t

q(s)ds = lim sup
k→∞

7k+8∫

7k+17/5

1
8ds = 0.575 < 1,

β = 0.125 < 1
e
,

lim sup
t→∞

ρ(t)∫

t

q(s) exp
( σ(s)∫

ρ(t)

q(u)du
)
ds

= lim sup
k→∞

7k+8∫

7k+17/5

q(s) exp
( σ(s)∫

7k+8

q(u)du
)
ds

= lim sup
k→∞

[ 7k+4∫

7k+17/5

q(s) exp
( 5s−28k−9∫

7k+8

q(u)du
)
ds

+
7k+5∫

7k+4

q(s) exp
( −3s+28k+23∫

7k+8

q(u)du
)
ds

+
7k+6∫

7k+5

q(s) exp
( 7k+8∫

7k+8

q(u)du
)
ds+

7k+7∫

7k+6

q(s) exp
( s+2∫

7k+8

q(u)du
)
ds

+
7k+8∫

7k+7

q(s) exp
( 7k+9∫

7k+8

q(u)du
)
ds

]
' 0.6425 < 1,

lim inf
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u)du


 ds = lim inf

k→∞

7k+2∫

7k+1

q(s) exp




σ(s)∫

7k+2

q(u)du


 ds

= lim inf
k→∞

7k+2∫

7k+1

q(s) exp




6s−35k−4∫

7k+2

q(u)du


 ds

' 0.186167 < 1
e
,



354 George E. Chatzarakis and Irena Jadlovská

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q1(u)du


 ds

= lim sup
k→∞

7k+8∫

7k+17/5

q(s) exp




σ(s)∫

7k+8

q1(u)du


 ds ' 0.6743,

0.6743 < 1−D(β) ' 0.991,

lim sup
t→∞

ρ(t)∫

t

q(s) exp




σ(s)∫

ρ(t)

q(u) exp




σ(u)∫

u

Q1(ξ)dξ


 du


 ds ' 0.9211 < 1

and
0.9211 < 1−D(β) ' 0.991.

That is, none of conditions (1.19)−(1.20), (1.22)−(1.23), (1.24)−(1.25) (for j = 1) and
(1.26)−(1.27) (for j = 1) is satisfied.

It is worth noting that the improvement of condition (2.40) to the corresponding
condition (1.19) is significant, approximately 79.54%, if we compare the values on the
left-hand side of these conditions. Also, the improvement compared to conditions (1.22),
(1.24) and (1.26) is very satisfactory, around 60.67%, 53.1% and 12.08%, respectively.
In addition, observe that conditions (1.24) and (1.26) do not lead to oscillation for
first iteration. On the contrary, condition (2.40) is satisfied from the first iteration.
This means that our condition is better and much faster than (1.24) and (1.26).
Remark 3.3. Similarly, one can construct examples to illustrate the other main
results.
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